Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 38(9): 5040-8, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21978048

ABSTRACT

PURPOSE: In this paper, the authors assess the accuracy of the Brainlab ExacTrac system for frameless intracranial stereotactic treatments in clinical practice. METHODS: They recorded couch angle and image fusion results (comprising lateral, longitudinal, and vertical shifts, and rotation corrections about these axes) for 109 stereotactic radiosurgery and 166 stereotactic radiotherapy patient treatments. Frameless stereotactic treatments involve iterative 6D image fusion corrections applied until the results conform to customizable pass criteria, theirs being 0.7 mm and 0.5° for each axis. The planning CT slice thickness was 1.25 mm. It has been reported in the literature that the CT slices' thickness impacts the accuracy of localization to bony anatomy. The principle of invariance with respect to patient orientation was used to determine spatial accuracy. RESULTS: The data for radiosurgery comprised 927 image pairs, of which 532 passed (pass ratio of 57.4%). The data for radiotherapy comprised 15983 image pairs, of which 10 050 passed (pass ratio of 62.9%). For stereotactic radiotherapy, the combined uncertainty of ExacTrac calibration, image fusion, and intrafraction motion was (95% confidence interval) 0.290-0.302 and 0.306-0.319 mm in the longitudinal and lateral axes, respectively. The combined uncertainty of image fusion and intrafraction motion in the anterior-posterior coordinates was 0.174-0.182 mm. For stereotactic radiosurgery, the equivalent ranges are 0.323-0.393, 0.337-0.409, and 0.231-0.281 mm. The overall spatial accuracy was 1.24 mm for stereotactic radiotherapy (SRT) and 1.35 mm for stereotactic radiosurgery (SRS). CONCLUSIONS: The ExacTrac intracranial frameless stereotactic system spatial accuracy is adequate for clinical practice, and with the same pass criteria, SRT is more accurate than SRS. They now use frameless stereotaxy exclusively at their center.


Subject(s)
Radiosurgery/instrumentation , Skull/surgery , Acceleration , Artifacts , Humans , Rotation
2.
Phys Med Biol ; 54(12): 3649-57, 2009 Jun 21.
Article in English | MEDLINE | ID: mdl-19458406

ABSTRACT

Complex intensity-modulated radiation therapy (IMRT) treatment plans require rigorous quality assurance tests. The aim of this study was to independently verify the delivered dose inside the patient in the region of the treatment site. A flexible naso-gastric tube containing thermoluminescent dosimeters (TLDs) was inserted into the oesophagus via the sinus cavity before the patient's first treatment. Lead markers were also inserted into the tube in order that the TLD positions could be accurately determined from the lateral and anterior-posterior electronic portal images taken prior to treatment. The measured dose was corrected for both daily linac output variations and the estimated dose received from the portal images. The predicted dose for each TLD was determined from the treatment planning system and compared to the measured TLD doses. The results comprise 431 TLD measurements on 43 patients. The mean measured-to-predicted dose ratio was 0.988 +/- 0.011 (95% confidence interval) for measured doses above 0.2 Gy. There was a variation in this ratio when the measurements were separated into low dose (0.2-1.0 Gy), medium dose (1.0-1.8 Gy) and high dose (>1.8 Gy) measurements. The TLD-loaded, naso-oesophageal tube for in vivo dose verification is straightforward to implement, and well tolerated by patients. It provides independent reassurance of the delivered dose for head and neck IMRT.


Subject(s)
Head and Neck Neoplasms/radiotherapy , Intubation/instrumentation , Radiotherapy, Conformal/instrumentation , Thermoluminescent Dosimetry/instrumentation , Equipment Design , Equipment Failure Analysis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...