Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 325(Pt B): 116596, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36326527

ABSTRACT

Diesel contamination of soil due to oil spills, disposal of refinery waste, oil exploration constitutes a major environmental problem. This paper reports the remediation of diesel contaminated clay soil using Zn/Fe0 bimetallic nanoparticle stabilized Rhamnolipid (RMLP) and Tween-80 (TW-80) surfactant foams. Fe0, and Zn (x wt%)/Fe0 (x = 0.2, 2.0, and 10.0) bimetallic nanoparticles are synthesized by using sodium borohydride reduction method. The average particle size (from FESEM) is calculated to be 62, 57, 42 and 35 nm for the Fe0, Zn (0.2)/Fe0, Zn (2)/Fe0 and Zn (10)/Fe0 nanopowders, respectively. The highest foamability and foam stability of 109.6 and 108.5 mL, respectively are observed for the RMLP (12 mg/l) surfactant foam stabilized with 6 mg/l Zn (10)/Fe0 nanoparticles. The surface tension values reduce to the lowest value of 28.1 and 31.4 mN/m with the addition of 6 mg/l of Zn (10)/Fe0 powder in RMLP and TW-80 solutions of 12 mg/l, respectively. The maximum diesel removal efficiency of 83.8 and 59%, is achieved by RMLP (12 mg/l) foam stabilized by Zn (10)/Fe0 nanoparticles (6 mg/l) for the clay soil contaminated with 100 and 500 µl/g of diesel, respectively. The physicochemical properties of the nanoparticles are studied to explain the foam properties and the remediation behavior. These findings regarding the nanoparticle stabilized foams can offer a cost-effective environment friendly commercial solution for soil remediation in the future.


Subject(s)
Environmental Restoration and Remediation , Metal Nanoparticles , Soil Pollutants , Soil/chemistry , Clay , Polysorbates , Soil Pollutants/analysis , Surface-Active Agents , Metal Nanoparticles/chemistry , Zinc
2.
J Environ Manage ; 243: 187-205, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31096172

ABSTRACT

Soil, exposed to petroleum oil contaminants (in the form of petrol, diesel, gasoline, crude oil, used motor oil), may cause potential damage to the environment, animal and human health. In this review article, mechanisms of the petroleum oil contaminant removal from soil by chemical surfactant systems such as surfactant solution, surfactant foam and nanoparticle stabilized surfactant foams are explained. Laboratory based research works, reported within the last decade on the application of similar systems towards the removal of petroleum oil contaminant from the soil, have been discussed. It is an important fact that the commercial implementation of the chemical surfactant based technology depends on the environmental properties (biodegradability and toxicity) of the surfactants. In recent times, surfactant foam and nanoparticle stabilized surfactant foam are becoming more popular and considered advantageous over the use of surfactant solution alone. However, more research works have to be conducted on nanoparticle stabilized foam. The impact of physicochemical properties of the nanoparticles on soil remediation has to be explored in depth.


Subject(s)
Environmental Restoration and Remediation , Petroleum , Soil Pollutants , Biodegradation, Environmental , Soil , Surface-Active Agents
3.
J Environ Manage ; 240: 93-107, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30928799

ABSTRACT

Stable surfactant foam might play a vital role in the effective remediation of diesel oil contaminated soil-a major environmental hazard. This paper, first of its kind, is reporting the remediation of diesel-contaminated desert soil, coastal soil and clay soil by aqueous alkylpolyglucoside phosphate (APG-Ph) surfactant foams stabilized by Fe0 and Fe3O4 nanoparticles. Zero-valent iron (Fe0, ∼28 nm) and iron oxide (Fe3O4, ∼20 nm) nanoparticles are synthesized by liquid-phase reduction and precipitation methods, respectively. The effect of these nanoparticles on foamability, foam stability, surface tension and remediation of diesel-contaminated soils are examined at various concentrations (volume %) of alkylpolyglucoside phosphate (APG-Ph) surfactant and nanoparticles (mg/l). The maximum values of foamability and foam stability recorded for 0.1 vol % APG-Ph foam stabilized by 3.5 mg/l Fe0 are 108.3 and 110.4 mL, respectively. At the same conditions, the Fe3O4 results in 99.4 and 87.5 mL, respectively, depicting the better performance of Fe0. Reduction in surface tension of 0.1 vol % APG-Ph solution (50.75 mN/m) with the addition of 3.5 mg/l Fe0 (9.51 mN/m) and Fe3O4 (19.45 mN/m) nanoparticle is observed. Both the nanoparticles enhance remediation. The foam formed with 0.1 vol % APG-Ph and stabilized by 3.5 mg/l Fe0 shows the maximum diesel removal efficiency of 95.3, 94.6, and 57.5% for coastal soil, desert soil and clay soil, respectively. On the other hand, Fe3O4 (3.5 mg/l) stabilized APG-Ph foam of the same concentration shows merely 76.0, 79.6 and 51.6% diesel removal efficiency for coastal soil, desert soil, and clay soil, respectively. The rate of diesel removal by zero-valent iron and iron oxide nanoparticle stabilized foams are found to be well described by the first order kinetic model. Higher foamability, foam stability, and reducing capacity accompanying lower surface tension, compared to those of the Fe3O4 nanoparticle stabilized foam, could explain higher diesel removal efficiency of the Fe0 nanoparticle stabilized foam.


Subject(s)
Environmental Restoration and Remediation , Metal Nanoparticles , Soil Pollutants , Ferric Compounds , Iron , Phosphates , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...