Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 32(10): 10LT01, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-31746778

ABSTRACT

The energy gap of simple band insulators like GaAs is a strong function of temperature due to the electron-phonon interactions. Interestingly, the perturbation from zero-point phonons is also predicted to cause significant (a few percent) renormalization of the energy gap at absolute zero temperature but its value has been difficult to estimate both theoretically and, of course, experimentally. Given the experimental evidence (Bhattacharya et al 2015 Phys. Rev. Lett. 114 047402) that strongly supports that the exponential broadening (Urbach tail) of the excitonic absorption edge at low temperatures is the manifestation of this zero temperature electron-phonon scattering, we argue that the location of the Urbach focus is the zero temperature unrenormalized gap. Experiments on GaAs yield the zero temperature bare energy gap to be 1.581 eV and thus the renormalization is estimated to be 66 meV.

2.
J Phys Condens Matter ; 30(50): 505902, 2018 12 19.
Article in English | MEDLINE | ID: mdl-30474617

ABSTRACT

We present a simple but mathematically complete first-principles theory for the pump-probe differential reflectivity experiment at negative delay (probe preceding the pump) to show how it gives information about the perturbed-free-induction-decay of coherent polarization. The calculation, involving the optical Bloch equations to describe the induced polarization and the Ewald-Oseen idea to calculate the reflected signal as a consequence of the free oscillations of perturbed dipoles, also explicitly includes the process of lock-in detection of a double-chopped signal after it has passed through a monochromator. The theory giving a closed form expression for the measured signal in both time and spectal domains is compared with experiments on high quality GaAs quantum well sample. The dephasing time inferred experimentally at 4 K compares remarkably well with the inverse of the absorption linewidth of the continuous-wave photoluminescence excitation spectrum. Spectrally-resolved signal at negative delay calculated from our theoretical expression nicely reproduces the coherent spectral oscillations observed in our experiments, although exact fitting of the experimental spectra with the theoretical expression is difficult on account of multiple resonances.

SELECTION OF CITATIONS
SEARCH DETAIL
...