Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Front Nutr ; 10: 1242301, 2023.
Article in English | MEDLINE | ID: mdl-37823089

ABSTRACT

Ruminants' milk is commonly used for supplying nutrients to infants when breast milk is unavailable or limited. Previous studies have highlighted the differences between ruminants' milk composition, digestion, absorption, and fermentation. However, whether consuming different ruminants' milk impact the appearance of the circulatory blood metabolites in the early postnatal life is not well understood. The analysis conducted here aimed to determine the effect of feeding exclusively whole milk from bovine, caprine or ovine species to pigs, approximately 7 days-old for 15 days, on circulatory blood plasma metabolites. Relative intensities of plasma metabolites were detected using a liquid chromatography-mass spectrometry based metabolomic approach. Seven polar and 83 non-polar (lipids) metabolites in plasma were significantly different (false discovery rate < 0.05) between milk treatments. These included polar metabolites involved in amino acid metabolism and lipids belonging to phosphatidylcholine, lysophosphatidylcholine, sphingomyelin, and triglycerides. Compared to the caprine or bovine milk group, the relative intensities of polar metabolites and unsaturated triglycerides were higher in the peripheral circulation of the ovine milk group. In contrast, relative intensities of saturated triglycerides and phosphatidylcholine were higher in the bovine milk group compared to the ovine or caprine milk group. In addition, correlations were identified between amino acid and lipid intake and their appearance in peripheral blood circulation. The results highlighted that consuming different ruminants' milk influences the plasma appearance of metabolites, especially lipids, that may contribute to early postnatal life development in pigs.

2.
Curr Res Food Sci ; 7: 100604, 2023.
Article in English | MEDLINE | ID: mdl-37840699

ABSTRACT

Quinoa (Chenopodium quinoa Willd.) is a pseudocereal plant that originally came from South America. The trend of consuming quinoa is propelled by its well‒balanced amino acid profile compared to that of other plants. In addition, its gluten‒free nature makes quinoa a promising diet option for celiac disease patients. Protein accounts for approximately 17% of the quinoa seed composition and quinoa protein possesses excellent quality. Quinoa protein is mainly composed of 11S globulins (37%) and 2S albumins (35%), both of which are stabilized by disulfide bonds. To date, the alkaline extraction method is the most commonly used method to extract quinoa protein. The functional properties and digestibility of quinoa protein can be improved with the help of various modification methods, and as a result, the application of quinoa protein will be extended. In this review, the extraction method, modification of functional properties and digestibility of quinoa protein are thoroughly discussed, providing insights into the application of quinoa protein in plant‒based foods.

3.
Front Nutr ; 10: 1226638, 2023.
Article in English | MEDLINE | ID: mdl-37731403

ABSTRACT

Background: The rate of stomach emptying of milk from different ruminant species differs, suggesting that the small intestinal digestibility of nutrients could also differ across these milk types. Objective: To determine the small intestinal amino acid (AA) digestibility of raw bovine, caprine, and ovine milk in the piglet as an animal model for the infant. Methods: Seven-day-old piglets (n = 12) consumed either bovine, caprine, or ovine milk diets for 15 days (n = 4 piglets/milk). On day 15, fasted piglets received a single meal of fresh raw milk normalized for protein content and containing the indigestible marker titanium dioxide. Entire gastrointestinal tract contents were collected at 210 min postprandially. Apparent AA digestibility (disappearance) in different regions of the small intestine was determined. Results: On average, 35% of the dietary AAs were apparently taken up in the small intestine during the first 210 min post-feeding, with 67% of the AA digestibility occurring in the first quarter (p ≤ 0.05) and 33% in the subsequent two quarters. Overall, except for isoleucine, valine, phenylalanine, and tyrosine, the small intestinal apparent digestibility of all AAs at 210 min postprandially in piglets fed ovine milk was, on average, 29% higher (p ≤ 0.05) than for those fed bovine milk. Except for lysine, there was no difference in the apparent digestibility (p > 0.05) of any AAs between piglets fed caprine milk or ovine milk. The apparent digestibility of alanine was higher (p ≤ 0.05) in piglets fed caprine milk than those fed bovine milk. When apparent digestibility was corrected for gastric AA retention, only small differences in the small intestinal apparent digestibility of AAs were observed across milk types. Conclusion: Bovine, caprine and ovine milk had different apparent small intestinal AA digestibility at 210 min postprandially. When corrected for gastric AA retention, the differences in apparent digestibility across species largely disappeared. The apparent AA digestibility differed across small intestinal locations.

4.
Front Neurosci ; 16: 937845, 2022.
Article in English | MEDLINE | ID: mdl-36046471

ABSTRACT

While infant formula is usually bovine milk-based, interest in other ruminant milk-based formulas is growing. However, whether different ruminant milk treatments with varying nutrient compositions influence the infant's brain development remains unknown. The aim was to determine the effects of consuming bovine, caprine, or ovine milk on brain gene expression in the early postnatal period using a pig model of the human infant. Starting at postnatal day 7 or 8, pigs were exclusively fed bovine, ovine, or caprine milk for 15 days. The mRNA abundance of 77 genes in the prefrontal cortex, hippocampus, and striatum regions was measured at postnatal day 21 or 22 using NanoString. The expression level of two hippocampal and nine striatal genes was most affected by milk treatments, particularly ovine milk. These modulatory genes are involved in glutamate, gamma-aminobutyric acid, serotonin, adrenaline and neurotrophin signaling and the synaptic vesicle cycle. The expression level of genes involved in gamma-aminobutyric acid signaling was associated with pigs' lactose intake. In contrast, milk treatments did not affect the mRNA abundance of the genes in the prefrontal cortex. This study provides the first evidence of the association of different ruminant milk treatments with brain gene expression related to cognitive function in the first 3 months of postnatal life.

5.
J Dairy Sci ; 105(5): 3810-3831, 2022 May.
Article in English | MEDLINE | ID: mdl-35221062

ABSTRACT

This study investigated the structural and physicochemical changes that occur in milk, a naturally designed complex structured emulsion, during gastric digestion using the bottle-fed piglet as an animal model. The gastric digestions of cow, goat, and sheep milk were compared in male piglets euthanized at different postfeeding times to collect the stomach chyme. The cow and noncow milks separated into curd (aggregated caseins) and liquid (mostly soluble whey) phases in the piglet's stomach. For milk from all the species, the curd remained longer in the stomach because of its slow disintegration, whereas the liquid phase emptied readily. The majority of the fat globules were found to be entrapped within the protein network of the curd. The rate of release of fat globules was strongly dependent on the breakdown of the surrounding protein network of the curd. The consistency of the gastric curds changed as digestion progressed, with goat and sheep milk curds having relatively softer curd consistency and less fused protein networks, especially toward the end of digestion. This might have led to the lower protein and fat retention in the goat and sheep milk curds and relatively faster gastric emptying of these nutrients from goat and sheep milk in comparison to cow milk. This in vivo study provided new and enhanced understanding of the mechanisms of the gastric digestion of milk from different species. It may have implications for developing bioinspired structures for the controlled digestion and delivery of nutrients.


Subject(s)
Digestion , Milk , Animals , Cattle , Euthanasia, Animal , Female , Goats , Male , Milk/chemistry , Sheep , Stomach , Swine
6.
Food Funct ; 12(4): 1783-1802, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33514994

ABSTRACT

The behavior of fat globules during the gastric digestion of raw and pasteurized cow, goat, and sheep whole milks was studied using a human gastric simulator. Microstructural and physicochemical analysis revealed that, initially, the coagulation of the milks in the human gastric simulator resulted in the majority of the milk fat globules being entrapped within the curd. As the digestion progressed, the proportion of fat globules entrapped within the aggregated protein matrix (curd) decreased; there was also some flocculation as well as coalescence of the fat globules within the curd. The liberation of the entrapped fat globules from the curd to the liquid phase of the chyme was strongly dependent on the disintegration and hydrolysis of the structured casein network. Surprisingly, the fat globules released (or already present) into the liquid phase of the chyme were not as extensively coalesced as those remaining within the curd. These phenomena were observed to be similar for the raw and pasteurized whole milk of all species. The pasteurized whole milks from all species formed relatively less structured coagula compared with their raw milk counterparts, leading to a greater extent of protein breakdown and, thus, higher proportions of fat release from the pasteurized milk curds. This study provides a deeper understanding of how the curd-forming properties of different mammalian milks in the gastric environment provide controlled delivery of nutrients (such as protein and fat).


Subject(s)
Digestion/physiology , Glycolipids , Glycoproteins , Lipid Droplets , Milk , Stomach/physiology , Animals , Cattle , Glycolipids/analysis , Glycolipids/chemistry , Glycolipids/metabolism , Glycoproteins/analysis , Glycoproteins/chemistry , Glycoproteins/metabolism , Goats , Kinetics , Lipid Droplets/chemistry , Lipid Droplets/metabolism , Milk/chemistry , Milk/metabolism , Sheep , Time Factors
7.
J Dairy Sci ; 104(2): 1394-1411, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33309366

ABSTRACT

Coagulation of milk in the stomach is the first crucial step in its digestion. Using a human gastric simulator, the dynamic gastric digestion of goat and sheep skim milk were compared with that of cow skim milk, focusing particularly on their physical characteristics. The gastric contents were analyzed for changes in dry matter and microstructure, and the extent of protein digestion. The study revealed that the skim milk from all species formed a curd within the first 15 min of gastric digestion, at which time the pH was ~6.1 to 6.3. Compared with cow skim milk, the dry matter contents of the clots formed from goat and sheep skim milk were lower and higher, respectively, which was due to the differences in their total solids and protein contents. Microstructural analysis showed that, as digestion progressed, the clot structure became more cohesive, along with a decrease in moisture content, which in turn affected the breakdown and hydrolysis of caseins by pepsin; this phenomenon was similar for milk from all species. However, the extent of moisture retained in the sheep skim milk clot appeared to be lower than those of the cow and goat skim milk clots. In addition, the relative firmness of the sheep milk clot was higher than those of the cow and goat milk clots at the end of gastric digestion. The pattern of protein hydrolysis by pepsin was similar for the milk of all species, despite the differences in the proportions of different proteins. The study provided insight into the coagulation kinetics of goat and sheep skim milk under in vitro gastric digestion conditions.


Subject(s)
Cattle , Digestion , Goats , Milk/chemistry , Milk/metabolism , Sheep , Animals , Caseins/metabolism , Female , Gastric Mucosa/enzymology , Goats/metabolism , Humans , Milk Proteins/analysis , Pepsin A/metabolism
8.
J Phys Chem Lett ; 11(24): 10548-10551, 2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33295776

ABSTRACT

Wet-chemical fabrication of a crystalline Ag-TCNQ (TCNQ = 7,7,8,8-tetracyanoquinodimethane) thin film on non-Ag substrate is challenging whereby the chemistry was powered by photon energy and/or electrical energy. We report for the first time, direct chemical growth of a Ag-TCNQ thin film on a functionalized Au substrate by employing the layer-by-layer (LbL) approach at ambient reaction conditions. Various Ag(I) salt precursors previously realized to be unsuitable for the fabrication of Ag-TCNQ thin films on non-Ag substrates ultimately gave rise to dense and uniform thin films of Ag-TCNQ. The crucial knob regulating the direct formation of the thin films of Ag-TCNQ was identified to be the pH of the respective Ag(I) solutions.

9.
Front Nutr ; 7: 577759, 2020.
Article in English | MEDLINE | ID: mdl-33123547

ABSTRACT

Background: The traditional dairy-cattle-based industry is becoming increasingly diversified with milk and milk products from non-cattle dairy species. The interest in non-cattle milks has increased because there have been several anecdotal reports about the nutritional benefits of these milks and reports both of individuals tolerating and digesting some non-cattle milks better than cattle milk and of certain characteristics that non-cattle milks are thought to share in common with human milk. Thus, non-cattle milks are considered to have potential applications in infant, children, and elderly nutrition for the development of specialized products with better nutritional profiles. However, there is very little scientific information and understanding about the digestion behavior of non-cattle milks. Scope and Approach: The general properties of some non-cattle milks, in comparison with human and cattle milks, particularly focusing on their protein profile, fat composition, hypoallergenic potential, and digestibility, are reviewed. The coagulation behaviors of different milks in the stomach and their impact on the rates of protein and fat digestion are reviewed in detail. Key findings and Conclusions: Milk from different species vary in composition, structure, and physicochemical properties. This may be a key factor in their different digestion behaviors. The curds formed in the stomach during the gastric digestion of some non-cattle milks are considered to be relatively softer than those formed from cattle milk, which is thought to contribute to the degree to which non-cattle milks can be easily digested or tolerated. The rates of protein and fat delivery to the small intestine are likely to be a function of the macro- and micro-structure of the curd formed in the stomach, which in turn is affected by factors such as casein composition, fat globule and casein micelle size distribution, and protein-to-fat ratio. However, as no information on the coagulation behavior of non-cattle milks in the human stomach is available, in-depth scientific studies are needed in order to understand the impact of compositional and structural differences on the digestive dynamics of milk from different species.

10.
J Dairy Sci ; 103(7): 5844-5862, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32331870

ABSTRACT

Dynamic low-amplitude oscillatory rheology was used to study the gelation properties of skim milk gels made at 37°C, using glucono-δ-lactone alone (acid gels) or a combination of glucono-δ-lactone and porcine pepsin ("combination gels"). The protein contents of the skim milks increased in the order goat milk < cattle milk < buffalo milk < sheep milk < deer milk, whereas the average casein micelle diameters increased in the order cattle milk < buffalo milk < goat milk < sheep milk ≃ deer milk. The gelation pH (4.55-4.73) of all milks were close to the isoelectric pH (4.6) of casein, except for buffalo milk, which had a significantly higher gelation pH (5.72). The storage moduli (G') of the acid gels increased with time in the milks of all species except for buffalo milk, for which a double peak in G' was observed. The final storage moduli after 6 h (G'final) increased in the order goat milk < cattle milk < sheep milk < deer milk < buffalo milk. In general, for the combination gels, the G'final values and the gelation pH increased to variable extents, except for goat milk. Confocal scanning laser microscopy showed that goat milk and cattle milk formed gels with more open protein networks compared with the dense clustered protein networks of the milks with high protein content (buffalo, sheep, and deer milks). This study indicates that milks from different species respond differently under the action of an acid precursor and pepsin. These results can be used to provide a better understanding of curd making and the digestion properties of noncattle milks.


Subject(s)
Freezing , Gluconates/pharmacology , Lactones/pharmacology , Milk/chemistry , Animals , Buffaloes , Cattle , Deer , Goats , Sheep, Domestic , Species Specificity
11.
J Phys Chem Lett ; 11(9): 3211-3217, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32251590

ABSTRACT

We demonstrate the first successful synthesis of reasonably monodisperse and single-crystalline gold nanoearbuds (Au NEBs) using a binary surfactant mixture of cetyltrimethylammonium chloride (CTAC) and benzyldimethylhexadecylammonium chloride (BDAC) in seed-mediated growth method. We have focused on the key chemical parameters behind the formation and growth of Au NEBs to result in tunable dimensions (length, 37-77 nm; width, 4-6 nm; aspect ratio, 7-19), as a consequence of which the longitudinal surface plasmon resonance (LSPR) peak could be tuned beyond 1200 nm. The achievement of LSPR beyond 1200 nm while maintaining the dimension well below 100 nm is a challenging accomplishment in the realm of one-dimensional (1D) Au nanostructures. This earbud-like morphology additionally exhibits three plasmonic peaks, rather uncommon for 1D nanostructures, which were analyzed theoretically based on the finite element method. The new resonance peak of the Au NEB was assigned as an additional longitudinal mode intensified by the bulbous ends as well as the high aspect ratio, thereby providing conclusive evidence that it is indeed a new morphology.

12.
Langmuir ; 35(29): 9456-9463, 2019 Jul 23.
Article in English | MEDLINE | ID: mdl-31262184

ABSTRACT

Concave cuboid (CCB) nanostructure is a member of the high-index facet (HIF) nanocrystals (NCs) family, geometrically derived from regular cuboid-excavation of each face. CCB NCs hold some additional characteristics such as surface cavity and sharp edges and corners as compared to its convex counterpart that makes it relatively more active in applications like electrochemical catalysis, surface enhanced Raman spectroscopy (SERS), and plasmonics. To date, there are only few reports available on the synthesis of CCB Au NCs where Br- containing surfactants have been used as a shape directing and stabilizing agent. However, none of them led to decent yield and size tunability. Herein, we report a robust seed mediated growth strategy where cetyltrimethylammonium chloride (CTAC) and tannic acid (TA) have been used as shape-directing/stabilizing and mild reducing agents, respectively. Our method not only allows the high yield fabrication of CCB Au NCs with uniform shape and size but also precise control over dimensions and degree of surface concavity. Moreover, the investigation of growth mechanism revealed that the evolution of CCB Au NCs from cylindrical nanorods (NRs) take place via arrow-headed nanorods and truncated CCB nanostructures. Furthermore, it has been observed that the presence of excess of Cl- is indeed playing a decisive role despite the headgroup of counter cationic part of surfactant. We anticipate that our findings may pave the path to design new synthetic strategies and understand the evolution of new nanostructures.

13.
Food Chem ; 286: 216-225, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-30827598

ABSTRACT

The digestion behaviours of pasteurized and UHT homogenized milks were investigated in in vivo rat stomach and in an in vitro dynamic human gastric simulator. The formation of coagulum under gastric conditions and the protein digestion profiles were similar in both systems. UHT milk formed curds with fragmented and crumbled structures, compared with the more cohesive curds formed from unheated or pasteurized milk. UHT milk had faster rates of protein hydrolysis and of the release of fat globules during digestion. These results are attributed to the differences in the structures of the curds formed from the samples with different treatments. The fragmented and crumbled structure of the curds obtained from UHT milk was probably the result of ß-lactoglobulin binding with casein micelles during processing, which sterically hindered aggregation of the casein micelles under gastric conditions. This study provides knowledge for understanding the gastric emptying and digestion of processed consumer milk.


Subject(s)
Milk/chemistry , Milk/metabolism , Pasteurization/methods , Animals , Caseins/metabolism , Digestion , Hot Temperature , Humans , Male , Milk Proteins/chemistry , Milk Proteins/metabolism , Rats, Sprague-Dawley , Stomach , Temperature
14.
Aging Med (Milton) ; 2(2): 74-81, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31942515

ABSTRACT

OBJECTIVE: This study measured and analyzed the serum levels of 24-hydroxycholesterol in patients with probable Alzheimer's disease (AD) and age-/sex-matched controls. METHODS: A case-control study involving 40 AD patients and 40 controls was performed at a tertiary neurological teaching hospital in eastern India. Blood and serum samples were collected for APOE genotyping and 24-hydroxycholesterol levels, respectively. RESULTS: Serum 24-hydroxycholesterol was significantly lower in AD patients compared to controls (median concentration: controls, 47.14 ng/mL (interquartile range, 16.34); AD patients, 32.93 ng/mL (interquartile range, 9.45); P < 0.001) but showed no significant correlation with Mini Mental State Examination (MMSE) score in AD cases (r = -0.169, P = 0.298) or in controls (r = 0.18, P = 0.26). No statistically significant difference was observed between serum 24-hydroxycholesterol levels of the APOE4-positive and -negative subgroups in AD patients (P = 0.79). Findings were consistent and unchanged even when the ratio of serum 24-hydroxycholesterol to serum total cholesterol was considered. CONCLUSION: The decreased 24-hydroxycholesterol level in peripheral circulation in AD cases observed in the present study may suggest its role in AD pathogenesis. The lack of a clear correlation between serum levels of 24-hydroxycholesterol and MMSE score-a surrogate marker of AD severity-raises the question as to whether 24-hydroxycholesterol level declines with decreasing neuronal mass or whether the steroid continues to play a protective role.

15.
Chem Sci ; 10(43): 10040-10047, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-32015817

ABSTRACT

Downsizing coordination polymers (CPs) to thin film configurations is a prerequisite for device applications. However, fabrication of thin films of CPs including metal-organic frameworks (MOFs) with reasonable electrical conductivity is challenging. Herein, thin film fabrication of a Cu(ii)-CP employing a layer-by-layer method is demonstrated whereby a self-assembled monolayer on Au was used as the functionalized substrate. Growth of the Cu(ii)-CP at the solid-liquid interface generated open-metal Cu(ii) sites in the thin film which were susceptible to activation by molecular dopant molecules. A significant enhancement in in-plane electrical conductivity and an unheralded cross-plane current rectification ratio (exceeding 105 both at room-temperature and at an elevated temperature) were achieved. Such a remarkable rectification ratio was realized, similar to those of commercial Si rectifier diodes. This phenomenon is attributed to the formation of an electronic heterostructure in the molecularly doped thin film. Molecular doping additionally transformed the interfacial properties of thin films from hydrophilic to highly hydrophobic.

16.
Aging Dis ; 8(3): 267-276, 2017 May.
Article in English | MEDLINE | ID: mdl-28580183

ABSTRACT

Symptoms of depression are present in a significant proportion of Alzheimer's disease (AD) patients. While epidemiological studies have shown a strong association between depression and AD, it has not been established whether depression is a risk factor or merely a co-morbidity of AD. It is also uncertain if depression affects the pathogenesis of AD. In this paper, we address these questions by measuring the serum levels of two common metabolic risk factors of AD and depression, inflammatory cytokines (IL 6 and TNF alpha) and serum 25-hydroxyvitamin D, in a case-control study. We measured the serum levels of IL 6, TNF α and 25-hydroxyvitamin D in age-matched healthy controls (n= 60) and in AD patients without depression (n=26) or AD patients with depression (n=34), and statistically analyzed the changes in these parameters among different groups under this study. Our results show that in AD there is a significant increase in IL 6 and TNF α and a marked decrease in 25-hydroxyvitamin D in the peripheral circulation compared to age-matched healthy controls. Furthermore, AD patients with depression have even significantly higher levels of IL 6 or TNF α and a lower level of 25-hydroxyvitamin D in circulation than in AD patients without depression. We also found a strong statistical correlation between the disease severity and the serum levels of IL 6, TNF α and 25-hydroxyvitamin D in AD patients with depression. These results suggest that altered circulating levels of common metabolic risk factors lead to the co-existence of depression with AD in many patients, and when they co-exist, the depression presumably affects the severity of AD presentations through more aggravated changes in these risk factors.

17.
Can J Diabetes ; 41(3): 259-265, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28236525

ABSTRACT

OBJECTIVES: The roles of deficient or deranged insulin, adiponectin and 25 hydroxy vitamin D (25[OH]D) levels regulating food intake, energy metabolism, glucose and lipid metabolism and body weight have been reported in the pathogenesis of prediabetes and type 2 diabetes mellitus. However, their congruity in the etiology of diabetes mellitus is unknown. Thus, the aim of the study was to investigate the roles of these parameters together and to establish their interrelationship in patients with prediabetes and diabetes. METHODS: The preliminary cross-sectional study included 77 persons with type 2 diabetes who were matched for age, sex and body mass index (BMI); 73 persons with prediabetes; and 52 healthy control subjects. Fasting serum levels of adiponectin, insulin and 25(OH)D were measured by commercially available immune assay kits, and routine biochemical parameters were analyzed in all study groups. RESULTS: The results show statistically significant lower levels of serum adiponectin and serum 25(OH)D and higher serum insulin levels in persons with prediabetes or type 2 diabetes with respect to controls. The changes in the serum adiponectin or serum 25(OH)D in persons with prediabetes and type 2 diabetes were found to be inversely correlated with the serum levels of insulin. Moreover, multiple linear regression analysis, with 25(OH)D, insulin and homeostatic model assessment-insulin resistance (HOMA-IR) as the variables, revealed that serum adiponectin levels might be an independent risk factor for the progression of prediabetes and type 2 diabetes in subjects. CONCLUSIONS: The association of these hormones might act as a significant predictor of progression of prediabetes to type 2 diabetes. Decreased serum adiponectin levels might be an independent risk factor for progression to prediabetes and type 2 diabetes, which may help in developing experimental models of the disease or in identifying biomarkers or disease-modifying drugs.


Subject(s)
Adiponectin/blood , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/diagnosis , Prediabetic State/blood , Prediabetic State/diagnosis , Vitamin D/analogs & derivatives , Adult , Biomarkers/blood , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Vitamin D/blood
18.
Aging Dis ; 6(6): 456-65, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26618047

ABSTRACT

The isoflavone, genistein, present in soybean is being actively investigated for its potential beneficial effect against Alzheimer's disease. Our data, however, show that in SHSY5Y cells genistein causes increased expression (mRNA and protein) of amyloid precursor protein (APP), increased mRNA expression and activity of ß-secretase and diminished level of insulin degrading enzyme (IDE) which also degrades amyloid beta peptide. These effects of genistein lead to enhanced accumulation of amyloid beta peptide (Aß42) in SHSY5Y cells. The results do not support the view that genistein could be a putative drug against AD and instead strengthen the epidemiological study which implies that genistein content of soybean food product (Tofu) leads to cognitive impairment.

19.
Int J Alzheimers Dis ; 2015: 192747, 2015.
Article in English | MEDLINE | ID: mdl-26351614

ABSTRACT

Alzheimer's disease (AD), the major cause of dementia worldwide, is characterized by progressive loss of memory and cognition. The sporadic form of AD accounts for nearly 90% of the patients developing this disease. The last century has witnessed significant research to identify various mechanisms and risk factors contributing to the complex etiopathogenesis of AD by analyzing postmortem AD brains and experimenting with animal and cell culture based models. However, the treatment strategies, as of now, are only symptomatic. Accumulating evidences suggested a significant association between vitamin D deficiency, dementia, and AD. This review encompasses the beneficial role of vitamin D in neurocognition and optimal brain health along with epidemiological evidence of the high prevalence of hypovitaminosis D among aged and AD population. Moreover, disrupted signaling, altered utilization of vitamin D, and polymorphisms of several related genes including vitamin D receptor (VDR) also predispose to AD or AD-like neurodegeneration. This review explores the relationship between this gene-environmental influence and long term vitamin D deficiency as a risk factor for development of sporadic AD along with the role and rationale of therapeutic trials with vitamin D. It is, therefore, urgently warranted to further establish the role of this potentially neuroprotective vitamin in preventing and halting progressive neurodegeneration in AD patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...