Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 715: 137043, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32041059

ABSTRACT

The abundance and nitrification activity of ammonia oxidizing archaea (AOA) and ammonia oxidizing bacteria (AOB) in bulk water and biofilm in chloraminated and chlorinated water supply systems were investigated. The abundance of AOB varied between cold and warm periods while that was the case for AOA only in biofilm. Lower ammonia concentrations favored the abundance of AOA over AOB. AOA and AOB were found more in distal zones of the distribution system (DS). Higher numbers of AOA and AOB were observed in DS associated with chloramination compared to those associated with chlorination. Significant positive correlations between ammonia-N in bulk water and AOA indicate a possibility of involvement of AOA in nitrification in DS. A separate laboratory-based experiment simulating DS condition was conducted to understand the effects of chlorine and chloramine dosages and temperature on AOA and AOB. AOA were inhibited less than AOB in the presence of lower concentrations of chlorine and chloramine (1.5 and 2.0 mg/L chlorine; 0.05-0.1 and 0.3-0.4 mg/L chloramine) while both of them were not detected at higher dosages (2.5 mg/L chlorine and 1.5-1.6 mg/L chloramine). At a low temperature (10-12 °C), chloramine and chlorine provided similar inhibition trends in which AOB were inhibited more than AOA. At a high temperature (25 °C), chloramine was less inhibitory to AOA and AOB than chlorine.


Subject(s)
Archaea , Biofilms , Ammonia , Bacteria , Halogenation , Nitrification , Oxidation-Reduction , Phylogeny , Soil Microbiology , Water , Water Supply
2.
FEMS Microbiol Lett ; 365(12)2018 06 01.
Article in English | MEDLINE | ID: mdl-29688457

ABSTRACT

The Bakken Shale has become one of the United States' most important oil and gas producing regions. This study examined the microbiology and geochemical characteristics of Bakken region produced water from 17 well sites sampled from the three-phase separator and produced water holding tank over a 6-month time frame. Produced water samples had high total dissolved solids (220 000-350 000 mg/L) and low dissolved organic carbon concentrations (41-132 mg/L). Microbial abundances varied between 101 and 104 16S rRNA gene copies/mL, approximately four orders of magnitude below those observed for produced waters from other hydraulic fracturing regions. The most abundant bacterial orders found in produced water samples were Bacillales, Halanaerobiales and Pseudomonadales, consistent with observations from other unconventional resource plays. Our observations suggest temporal community structuring, as produced waters sampled early in our sampling period were dominated by Halanaerobiales, and produced waters sampled at the remaining winter sampling time points were characterized by high relative abundances of Bacillales and Pseudomonadales. Data from this study extends the current available knowledge of the microbiology and chemistry associated with produced water from the Bakken region and provides insights into microbial community dynamics in hypersaline subsurface fluids.


Subject(s)
Microbial Consortia , Wastewater/chemistry , Wastewater/microbiology , Water Microbiology , Hydraulic Fracking , Natural Gas , United States
3.
Bioresour Technol ; 244(Pt 1): 850-859, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28841790

ABSTRACT

The abundance of ammonia oxidizing archaea (AOA) and ammonia oxidizing bacteria (AOB) was investigated in full-scale two-stage trickling filters (TF) and moving bed bioreactor (MBBR) treating municipal wastewater. Biofilm samples were collected for 17months from nitrifying TF (NTF), biochemical oxygen demand TF (BTF), and MBBR media. The abundance of AOA and AOB was determined using a quantitative PCR approach targeting the ammonia monooxygenase subunit A gene of archaea and bacteria. AOA were dominant in the NTF and MBBR, while AOB dominated in the BTF. AOA and AOB were more abundant during warmer months, and AOA were detected in the BTF only during warmer months. In laboratory nitrification activity experiments, ammonia oxidation to nitrite decreased when AOA populations from the NTF and MBBR were inhibited, demonstrating that AOA contributed to nitrification. This study has shown that AOA outnumber AOB and contribute to ammonia oxidation in full-scale nitrifying biofilm processes.


Subject(s)
Archaea , Nitrification , Wastewater , Ammonia , Bacteria , Biofilms , Oxidation-Reduction , Phylogeny , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...