Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Eur J Med Chem ; 269: 116256, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38461679

ABSTRACT

Visceral leishmaniasis is a potentially fatal disease caused by infection by the intracellular protist pathogens Leishmania donovani or Leishmania infantum. Present therapies are ineffective because of high costs, variable efficacy against different species, the requirement for hospitalization, toxicity and drug resistance. Detailed analysis of previously published hit molecules suggested a crucial role of 'guanidine' linkage for their efficacy against L. donovani. Here we report the design of 2-aminoquinazoline heterocycle as a basic pharmacophore-bearing guanidine linkage. The introduction of various groups and functionality at different positions of the quinazoline scaffold results in enhanced antiparasitic potency with modest host cell cytotoxicity using a physiologically relevant THP-1 transformed macrophage infection model. In terms of the ADME profile, the C7 position of quinazoline was identified as a guiding tool for designing better molecules. The good ADME profile of the compounds suggests that they merit further consideration as lead compounds for treating visceral leishmaniasis.


Subject(s)
Leishmania donovani , Leishmania infantum , Leishmaniasis, Visceral , Humans , Leishmaniasis, Visceral/drug therapy , Antiparasitic Agents/pharmacology , Quinazolines/pharmacology , Quinazolines/therapeutic use
2.
Viruses ; 15(2)2023 02 16.
Article in English | MEDLINE | ID: mdl-36851762

ABSTRACT

Severe COVID-19 frequently features a systemic deluge of cytokines. Circulating cytokines that can stratify risks are useful for more effective triage and management. Here, we ran a machine-learning algorithm on a dataset of 36 plasma cytokines in a cohort of severe COVID-19 to identify cytokine/s useful for describing the dynamic clinical state in multiple regression analysis. We performed RNA-sequencing of circulating blood cells collected at different time-points. From a Bayesian Information Criterion analysis, a combination of interleukin-8 (IL-8), Eotaxin, and Interferon-γ (IFNγ) was found to be significantly linked to blood oxygenation over seven days. Individually testing the cytokines in receiver operator characteristics analyses identified IL-8 as a strong stratifier for clinical outcomes. Circulating IL-8 dynamics paralleled disease course. We also revealed key transitions in immune transcriptome in patients stratified for circulating IL-8 at three time-points. The study identifies plasma IL-8 as a key pathogenic cytokine linking systemic hyper-inflammation to the clinical outcomes in COVID-19.


Subject(s)
COVID-19 , Interleukin-8 , Humans , Bayes Theorem , Cytokines , Disease Progression
3.
Eur J Med Chem ; 240: 114577, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-35810535

ABSTRACT

Visceral leishmaniasis is a potentially fatal disease caused by the parasitic protists, Leishmania donovani and L. infantum. Current treatments remain unsuitable due to cost, the need for hospitalization, variable efficacy against different species, toxicity and emerging resistance. Herein, we report the SAR exploration of the novel hit 4-Fluoro-N-(5-(4-methoxyphenyl)-1-methyl-1H-imidazole-2-yl)benzamide [1] previously identified from a high throughput screen against Trypanosoma brucei, Trypanosoma cruzi and Leishmania donovani. An extensive and informative set of analogues were synthesized incorporating key modifications around the scaffold resulting in improved potency, whilst the majority of compounds maintained low cytotoxicity against human THP-1 macrophages that are target cells for these pathogens. New lead compounds identified within this study also maintained desirable physicochemical properties, improved metabolic stability in vitro and displayed no significant mitotoxicity against HepG2 cell lines. This compound class warrants continued investigation towards development as a novel treatment for Visceral Leishmaniasis.


Subject(s)
Antiprotozoal Agents , Leishmania donovani , Leishmaniasis, Visceral , Trypanosoma cruzi , Antiprotozoal Agents/chemistry , Humans , Imidazoles/therapeutic use , Leishmaniasis, Visceral/drug therapy
4.
Arch Biochem Biophys ; 579: 85-90, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26095616

ABSTRACT

The globin coupled heme containing adenylate cyclase from Leishmania major (HemAC-Lm) has two globin domains (globin-A and globin-B). Globin-B domain (210-360 amino acids) may guide the interaction between globin-A and adenylate cyclase domains for the regulation of catalysis. We investigated the role of globin-B domain in HemAC-Lm by constructing a series of mutants namely Δ209 (209 amino acids deleted), Δ360 (360 amino acids deleted), H161A, H311A and H311A-Δ209. Spectroscopic data suggest that the Δ209 and H311A-Δ209 proteins to be Fe(2+)-O2 form and apo form, respectively, indicating that His311 residue in the globin-B domain is crucial for heme binding in Δ209 protein. However, the H311A mutant is still of the Fe(2+)-O2 form whereas H161A mutant shows the apo form, indicating that only His161 residue in the globin-A domain is responsible for heme binding in full length enzyme. cAMP measurements suggest that the activities of Δ360 and Δ209 proteins were ∼10 and ∼1000 times lesser than full length enzyme, respectively, leading to the fact that globin-B domain inhibited catalysis rather than activation in absence of globin-A domain. These data suggest that the O2 bound globin-A domain in HemAC-Lm allows the best cooperation of the catalytic domain interactions to generate optimum cAMP.


Subject(s)
Adenylyl Cyclases/chemistry , Adenylyl Cyclases/metabolism , Escherichia coli/metabolism , Globins/chemistry , Globins/metabolism , Heme/chemistry , Heme/metabolism , Amino Acid Sequence , Binding Sites , Catalysis , Enzyme Activation , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary , Structure-Activity Relationship , Substrate Specificity
5.
Biochim Biophys Acta ; 1844(3): 615-22, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24424241

ABSTRACT

Recently we have described the globin-coupled heme containing adenylate cyclase from Leishmania major (HemAC-Lm) that shows an O2 dependent cAMP signaling (Sen Santara, et. al. Proc. Natl. Acad. Sci. U.S.A. 110, 16790-16795 (2013)). The heme iron of HemAC-Lm is expected to participate in oxygen binding and activates adenylate cyclase activity during catalysis, but its interactions with O2 are uncharacterized. We have utilized the HemAC-Lm and stopped-flow methods to study the formation and decay of the HemAC-Lm oxygenated complex at 25°C. Mixing of the ferrous HemAC-Lm with air-saturated buffer generates a very stable oxygenated complex with absorption maxima at 414, 540 and 576nm. The distal axial ligand in the deoxygenated ferrous HemAC-Lm is displaced by O2 at a rate of ~10s(-1). To prepare apoprotein of heme iron in HemAC-Lm, we have mutated the proximal His161 to Ala and characterized the mutant protein. The apo as well as heme reconstituted ferric state of the mutant protein shows a ~30 fold lower catalytic activity compared to oxygenated form of wild type protein. The oxygenated form of heme reconstituted mutant protein is highly unstable (decay rate=6.1s(-1)). Decomposition of the oxygenated intermediate is independent of O2 concentration and is monophasic. Thus, the stabilization of ferrous-oxy species is an essential requirement in the wild type HemAC-Lm for a conformational alteration in the sensor domain that, sequentially, activates the adenylate cyclase domain, resulting in the synthesis of cAMP.


Subject(s)
Adenylyl Cyclases/chemistry , Ferrous Compounds/chemistry , Globins/chemistry , Heme/chemistry , Histidine/chemistry , Leishmania major/enzymology , Adenylyl Cyclases/genetics , Enzyme Stability , Kinetics , Models, Molecular , Mutagenesis, Site-Directed
6.
Biochemistry ; 52(49): 8878-87, 2013 Dec 10.
Article in English | MEDLINE | ID: mdl-24261670

ABSTRACT

Previous optical and electron paramagnetic resonance (EPR) spectroscopic studies of the newly discovered peroxynitrite scavenging pseudoperoxidase from Leishmania major (LmPP) suggested that ferric LmPP contained a six-coordinate low-spin (6cLS) heme with a thiolate ligand, presumably a cysteine, bound to its heme iron. To identify the axial ligands of LmPP, we exploit a systematic mutational analysis of potential heme ligands. On the basis of UV-visible and EPR spectroscopy, we report that the substitution of the proximal His206 with alanine in LmPP alters the 6cLS to a five-coordinate high spin (5cHS) form at pH 4.0 that has a spectrum characteristic of a Cys-ligated 5cHS derivative. The electronic absorption and EPR analysis of all alanine-substituted Cys and Met single mutants establish that when Cys107 is replaced with alanine, a new species appears that has a spectrum characteristic of a histidine-ligated 5cHS derivative at pH 4.0. Together, these results suggest that His206 and Cys107 act as the proximal and distal axial ligands in ferric LmPP, respectively. However, the electronic properties of reduced wild-type LmPP are similar to those of known 5cHS His-ligated heme proteins at pH 8.8, indicating that the thiolate bond was broken upon reduction. Furthermore, the wild-type protein was only partially reduced at pH 4.0, but the E105L mutant was completely reduced to form a 5cHS ferrous heme. These results imply that the presence of an acidic residue near the distal site may prevent reduction of the heme iron at acidic pH.


Subject(s)
Leishmania major/enzymology , Peroxidase/chemistry , Protozoan Proteins/chemistry , Amino Acid Substitution , Carbon Monoxide/chemistry , Electron Spin Resonance Spectroscopy , Heme/chemistry , Hydrogen-Ion Concentration , Imidazoles/chemistry , Ligands , Models, Molecular , Mutagenesis, Site-Directed , Peroxidase/genetics , Protein Binding , Protozoan Proteins/genetics , Structural Homology, Protein
7.
Proc Natl Acad Sci U S A ; 110(42): 16790-5, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24082109

ABSTRACT

Globin and adenylate cyclase play individually numerous crucial roles in eukaryotic organisms. Comparison of the amino acid sequences of globins and adenylate cyclase from prokaryotic to eukaryotic organisms suggests that they share an early common ancestor, even though these proteins execute different functions in these two kingdoms. The latest studies of biological signaling molecules in both prokaryotic and eukaryotic organisms have discovered a new class of heme-containing proteins that act as sensors. The protein of the globin family is still unknown in the trypanosomatid parasites, Trypanosome and Leishmania. In addition, globin-coupled heme containing adenylate cyclase is undescribed in the literature. Here we report a globin-coupled heme containing adenylate cyclase (HemAC-Lm) in the unicellular eukaryotic organism Leishmania. The protein exhibits spectral properties similar to neuroglobin and cytoglobin. Localization studies and activity measurements demonstrate that the protein is present in cytosol and oxygen directly stimulates adenylate cyclase activity in vivo and in vitro. Gene knockdown and overexpression studies suggest that O2-dependent cAMP signaling via protein kinase A plays a fundamental role in cell survival through suppression of oxidative stress under hypoxia. In addition, the enzyme-dependent cAMP generation shows a stimulatory as well as inhibitory role in cell proliferation of Leishmania promastigotes during normoxia. Our work begins to clarify how O2-dependent cAMP generation by adenylate cyclase is likely to function in cellular adaptability under various O2 tensions.


Subject(s)
Adaptation, Physiological/physiology , Adenylyl Cyclases/metabolism , Heme/metabolism , Leishmania major/metabolism , Oxygen/metabolism , Protozoan Proteins/metabolism , Adenylyl Cyclases/genetics , Cyclic AMP/genetics , Cyclic AMP/metabolism , Heme/genetics , Leishmania major/genetics , Protozoan Proteins/genetics
8.
Biochim Biophys Acta ; 1834(10): 2057-63, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23831153

ABSTRACT

The conserved distal histidine in peroxidases has been considered to play a major role as a general acid-base catalyst for heterolytic cleavage of an OO bond in H2O2. However, heme peroxidases react with peroxynitrite to form transient intermediates but the role of the distal histidine in this reaction is still unknown. In order to investigate catalytic roles of the histidine at the distal cavity, two Leishmania major peroxidase (LmP) mutants (H68E, H68V) were prepared. The rate of transition from ferric H68V to Compound ES by H2O2 is decreased by approximately five orders of magnitude relative to wild type, which is consistent with electron donor oxidation data where the H68V is ~1000 fold less active than wild type. In the reaction with peroxynitrite, the formation rate of intermediates in the mutants is not significantly lower than that for the wild type, indicating that the His68 has no major role in homolytic cleavage of an OO bond in peroxynitrite. EPR spectroscopic data suggest that the transient intermediates formed by the reaction of LmP with H2O2 exhibits an intense and stable signal similar to CCP Compound ES whereas in case of the reaction with peroxynitrite, this signal disappears, indicating that the transient intermediate is Compound II. Rapid kinetics data suggest that the distal His68 mutants display higher decay rates of Compound II than wild type. Thus, His68 mutations minimize Compound II formation (inactive species in peroxynitrite scavenging cycles) by increasing decay rates during the steady state and results in higher peroxynitrite degrading activity.


Subject(s)
Histidine/chemistry , Hydrogen Peroxide/chemistry , Leishmania major/chemistry , Peroxidase/chemistry , Peroxynitrous Acid/chemistry , Protozoan Proteins/chemistry , Biocatalysis , Electron Spin Resonance Spectroscopy , Enzyme Assays , Escherichia coli/genetics , Gene Expression , Histidine/genetics , Kinetics , Leishmania major/enzymology , Mutation , Oxidation-Reduction , Peroxidase/genetics , Peroxidase/isolation & purification , Protozoan Proteins/genetics , Protozoan Proteins/isolation & purification , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification
9.
Free Radic Biol Med ; 53(10): 1819-28, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-22985938

ABSTRACT

Heme proteins share the ability to detoxify reactive nitrogen intermediates (NO and peroxynitrite). But, to date, no heme-containing enzymatic defense against toxic reactive nitrogen intermediates has been discovered in Leishmania species. We have cloned, expressed, and characterized a pseudoperoxidase from Leishmania major (LmPP) that is capable of detoxifying peroxynitrite (ONOO(-)). Optical, EPR, and resonance Raman spectral studies demonstrate that ONOO(-) can rapidly convert the six-coordinate ferric low-spin to a ferric high-spin form at neutral pH. Western blotting and immunofluorescence studies with anti-LmPP antibody show that the mature enzyme is located at the plasma membrane of amastigotes and is expressed eightfold higher in amastigotes compared to promastigotes. Moreover, to further investigate its exact physiological role in Leishmania, we have created LmPP-knockout mutants by gene replacement in L. major strains. IC(50) values for exogenously added H(2)O(2) or 3-morpholinosydnonimine (SIN1) show that deletion of LmPP in L. major renders the cell more susceptible to SIN1. The null mutant cells exhibit a marked decrease in virulence on infection with activated macrophages as well as inoculation into BALB/c mice. Collectively, these data provide strong evidence that LmPP plays an important role in the enzymatic defense against ONOO(-) within macrophages.


Subject(s)
Leishmania major/enzymology , Peroxidase/metabolism , Peroxynitrous Acid/metabolism , Protozoan Proteins/metabolism , Amino Acid Sequence , Animals , Cell Line , Cell Membrane/enzymology , Female , Hydrogen Peroxide/toxicity , Leishmania major/genetics , Leishmania major/metabolism , Leishmania major/pathogenicity , Leishmaniasis, Cutaneous/parasitology , Macrophage Activation , Macrophages/metabolism , Macrophages/parasitology , Membrane Proteins/metabolism , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Molsidomine/analogs & derivatives , Molsidomine/toxicity , Peroxidase/chemistry , Peroxidase/genetics , Peroxidase/isolation & purification , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/isolation & purification
10.
J Biol Chem ; 287(42): 34992-35003, 2012 Oct 12.
Article in English | MEDLINE | ID: mdl-22923617

ABSTRACT

NAD(P)H cytochrome b(5) oxidoreductase (Ncb5or), comprising cytochrome b(5) and cytochrome b(5) reductase domains, is widely distributed in eukaryotic organisms. Although Ncb5or plays a crucial role in lipid metabolism of mice, so far no Ncb5or gene has been reported in the unicellular parasitic protozoa Leishmania species. We have cloned, expressed, and characterized Ncb5or gene from Leishmania major. Steady state catalysis and spectral studies show that NADH can quickly reduce the ferric state of the enzyme to the ferrous state and is able to donate an electron(s) to external acceptors. To elucidate its exact physiological role in Leishmania, we attempted to create NAD(P)H cytochrome b(5) oxidoreductase from L. major (LmNcb5or) knock-out mutants by targeted gene replacement technique. A free fatty acid profile in knock-out (KO) cells reveals marked deficiency in linoleate and linolenate when compared with wild type (WT) or overexpressing cells. KO culture has a higher percentage of dead cells compared with both WT and overexpressing cells. Increased O(2) uptake, uncoupling and ATP synthesis, and loss of mitochondrial membrane potential are evident in KO cells. Flow cytometric analysis reveals the presence of a higher concentration of intracellular H(2)O(2), indicative of increased oxidative stress in parasites lacking LmNcb5or. Cell death is significantly reduced when the KO cells are pretreated with BSA bound linoleate. Real time PCR studies demonstrate a higher Δ12 desaturase, superoxide dismutase, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA with a concomitant fall in Δ9 desaturase mRNA expression in LmNcb5or null cell line. Together these findings suggest that decreased linoleate synthesis, and increased oxidative stress and apoptosis are the major consequences of LmNcb5or deficiency in Leishmania.


Subject(s)
Apoptosis/physiology , Cytochrome-B(5) Reductase/metabolism , Leishmania major/enzymology , Linoleic Acid/biosynthesis , Oxidative Stress/physiology , Protozoan Proteins/metabolism , Animals , Cytochrome-B(5) Reductase/genetics , Gene Expression Regulation, Enzymologic/physiology , Gene Knockdown Techniques , Leishmania major/cytology , Leishmania major/genetics , Linoleic Acid/genetics , Mice , Oxygen , Oxygen Consumption/physiology , Protozoan Proteins/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RNA, Protozoan/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...