Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Prog ; : e3467, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38660973

ABSTRACT

The recent COVID-19 pandemic revealed an urgent need to develop robust cell culture platforms which can react rapidly to respond to this kind of global health issue. Chinese hamster ovary (CHO) stable pools can be a vital alternative to quickly provide gram amounts of recombinant proteins required for early-phase clinical assays. In this study, we analyze early process development data of recombinant trimeric spike protein Cumate-inducible manufacturing platform utilizing CHO stable pool as a preferred production host across three different stirred-tank bioreactor scales (0.75, 1, and 10 L). The impact of cell passage number as an indicator of cell age, methionine sulfoximine (MSX) concentration as a selection pressure, and cell seeding density was investigated using stable pools expressing three variants of concern. Multivariate data analysis with principal component analysis and batch-wise unfolding technique was applied to evaluate the effect of critical process parameters on production variability and a random forest (RF) model was developed to forecast protein production. In order to further improve process understanding, the RF model was analyzed with Shapley value dependency plots so as to determine what ranges of variables were most associated with increased protein production. Increasing longevity, controlling lactate build-up, and altering pH deadband are considered promising approaches to improve overall culture outcomes. The results also demonstrated that these pools are in general stable expressing similar level of spike proteins up to cell passage 11 (~31 cell generations). This enables to expand enough cells required to seed large volume of 200-2000 L bioreactor.

2.
Biotechnol Bioeng ; 120(7): 1746-1761, 2023 07.
Article in English | MEDLINE | ID: mdl-36987713

ABSTRACT

Protein expression from stably transfected Chinese hamster ovary (CHO) clones is an established but time-consuming method for manufacturing therapeutic recombinant proteins. The use of faster, alternative approaches, such as non-clonal stable pools, has been restricted due to lower productivity and longstanding regulatory guidelines. Recently, the performance of stable pools has improved dramatically, making them a viable option for quickly producing drug substance for GLP-toxicology and early-phase clinical trials in scenarios such as pandemics that demand rapid production timelines. Compared to stable CHO clones which can take several months to generate and characterize, stable pool development can be completed in only a few weeks. Here, we compared the productivity and product quality of trimeric SARS-CoV-2 spike protein ectodomains produced from stable CHO pools or clones. Using a set of biophysical and biochemical assays we show that product quality is very similar and that CHO pools demonstrate sufficient productivity to generate vaccine candidates for early clinical trials. Based on these data, we propose that regulatory guidelines should be updated to permit production of early clinical trial material from CHO pools to enable more rapid and cost-effective clinical evaluation of potentially life-saving vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animals , Humans , Cricetulus , SARS-CoV-2/metabolism , CHO Cells , Antibodies, Monoclonal , COVID-19 Vaccines/genetics , COVID-19/prevention & control , Recombinant Proteins/metabolism , Vaccines, Subunit/genetics
3.
J Biomol Screen ; 17(1): 49-58, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21940714

ABSTRACT

Histone posttranslational modifications are among the epigenetic mechanisms that modulate chromatin structure and gene transcription. Histone methylation and demethylation are dynamic processes controlled respectively by histone methyltransferases (HMTs) and demethylases (HDMs). Several HMTs and HDMs have been implicated in cancer, inflammation, and diabetes, making them attractive targets for drug therapy. Hence, the discovery of small-molecule modulators for these two enzyme classes has drawn significant attention from the pharmaceutical industry. Herein, the authors describe the development and optimization of homogeneous LANCE Ultra and AlphaLISA antibody-based assays for measuring the catalytic activity of two epigenetic enzymes acting on lysine 4 of histone H3: SET7/9 methyltransferase and LSD1 demethylase. Both the SET7/9 and LSD1 assays were designed as signal-increase assays using biotinylated peptides derived from the N-terminus of histone H3. In addition, the SET7/9 assay was demonstrated using full-length histone H3 protein as substrate in the AlphaLISA format. Optimized assays in 384-well plates are robust (Z' factors ≥0.7) and sensitive, requiring only nanomolar concentrations of enzyme and substrate. All assays allowed profiling of known SET7/9 and LSD1 inhibitors. The results demonstrate that the optimized LANCE Ultra and AlphaLISA assay formats provide a relevant biochemical screening approach toward the identification of small-molecule inhibitors of HMTs and HDMs that could lead to novel epigenetic therapies.


Subject(s)
Drug Evaluation, Preclinical/methods , Enzyme Inhibitors/pharmacology , Histone Demethylases/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Lysine/metabolism , Biotinylation , Epigenesis, Genetic/drug effects , Histones/metabolism , Immunoassay/methods , Peptides/metabolism , Small Molecule Libraries
SELECTION OF CITATIONS
SEARCH DETAIL
...