Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Model ; 29(11): 338, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37831201

ABSTRACT

CONTEXT: The Adenine-based nanotube is theoretically designed, and its transmission spectra are investigated. The quantum-confined Adenine nanotube shows electronic transmission of the carrier at minimum stress. In this paper, the prediction of transmission spectra of the quantum-confined bio-molecular nanotube is investigated and deeply studied. Molecular level structure prediction and their electronic characterization can be possible with ab initio accuracy using a machine learning algorithmic approach. At the molecular level, it is difficult to predict quantum transmission spectra as these results are always hampered by the carrier backscattering effect. However, mostly these predictive models are available for intrinsic semi-conducting materials and other inorganic structures. METHODS: Machine learning algorithms are designed to predict the electronic properties of the nano-scale structure. This task is even more difficult when quantum-confined molecular arrangements are considered, whose transmission spectra are sensitive to the confinements applied. This paper presents an effective machine learning algorithms framework for predicting transmission spectra of quantum-confined nanotubes from their geometries. In this paper, we consider regression machine learning algorithms to find maximum accuracy with varying configurations and geometries to excerpt their atoms' local environment information. The Hamiltonian components are then used to enable the utilization of the information to predict the electronic structure at any arbitrary sampling point or k-point. The theoretical basics introduced in this process help to capture and incorporate minor changes in quantum confinements into transmission spectra and provide the framework algorithm with more accuracy. This paper shows the ability to predict the accurate algorithmic models of the Adenine nanotube. In this framework, we have considered a tiny data set to achieve a rapid and reliable method for electronic structure determination and also propose the best algorithm for predictive model analysis.

2.
J Mol Model ; 27(2): 23, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33410979

ABSTRACT

One of the emerging areas of today's research arena is molecular modeling and molecular computing. The molecular logic gate can be theoretically implemented from single-strand DNA which consists of four basic nucleobases. In this study, the electronic transmission characteristics of DNA chain are investigated to form the logic gate. This biomolecular single-strand DNA chain is passed through an electrically doped gallium-arsenide nano-pore to achieve reasonably improved transmission along <1 1 1> direction. Current-voltage characteristic and device density of states with HOMO-LUMO plot of the device are explained along with the conductivity of the device to confirm the characteristics of some important logic gates like a universal gate. Ultimately the property of resistivity proves the law of Boolean logic of AND gate and universal logic gate, viz., NAND and NOR gate. All the electronic properties of the Boolean logic gate are explored based on the first principle approach by non-equilibrium Green's function coupled with density functional theory in room temperature.


Subject(s)
Arsenicals/chemistry , DNA/chemistry , Electricity , Gallium/chemistry , Logic , Algorithms , Computer Simulation , Electric Conductivity , Electrons , Models, Molecular , Nanopores
3.
IET Nanobiotechnol ; 13(2): 237-241, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31051457

ABSTRACT

The switching property of an optical single molecular switch based on a single DNA molecule guanine with a single walled carbon nanotube electrode has been investigated using density functional theory along with non-equilibrium Green's function based first principle approach. The semi-empirical model of this single bio-molecular switch has been operated at an ultra-high 25 THz frequency in mid-UV range. This single bio-molecule comprises switching activity upon UV photo-excitation. The influence of the highest occupied molecular orbital and lowest unoccupied molecular orbital gap and the quantum ballistic transmission into the switching activity are discussed in detail in this study. It has been observed that the maximum ON-OFF ratio, i.e. 327 is obtained at +0.8 V bias voltage. Theoretical results show that current through the twisted form is sufficiently larger than the straightened form, which recommends that this structure has smart prospective application in the future generation switching nanotechnology.


Subject(s)
Guanine/chemistry , Nanotechnology/instrumentation , Nanotechnology/methods , Nanotubes, Carbon/chemistry , Electrodes , Models, Molecular , Nanotubes, Carbon/ultrastructure
4.
IET Nanobiotechnol ; 13(1): 77-83, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30964042

ABSTRACT

Molecular logic gate has been proposed using single-strand DNA (ssDNA) consisting of basic four nucleobases. In this study, density functional theory and non-equilibrium Green's function based first principle approach is applied to investigate the electronic transmission characteristics of ssDNA chain. The heavily hydrogen-doped-ssDNA (H-ssDNA) chain is connected with gold electrode to achieve enhanced quantum-ballistic transmission along 〈1 1 1〉 direction. Logic gates OR, Ex-OR, NXOR have been implemented using this analytical model of H-ssDNA device. Enhanced logic properties have been observed for ssDNA after H adsorption due to improved electronic transmission. Dense electron cloud is considered as logic 'high' (1) output in presence of hydrogen molecule and on the contrary sparse cloud indicate logic 'low' (0) in the absence of hydrogen molecule. Device current is significantly increased from 0.2 nA to 2.4 µA (approx.) when ssDNA chain is heavily doped with hydrogen molecule. The current-voltage characteristics confirm the formation of various Boolean logic gate operations.


Subject(s)
Computers, Molecular , DNA, Single-Stranded , Hydrogen/chemistry , DNA, Single-Stranded/chemical synthesis , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/ultrastructure , Electrodes , Gold/chemistry , Logic
5.
J Mol Graph Model ; 76: 118-127, 2017 09.
Article in English | MEDLINE | ID: mdl-28719843

ABSTRACT

The Field Effect Transistor (FET) characteristics has been observed from a single-walled Adenine nanotube device using Density Functional Theory associated with Non Equilibrium Green's Function based First Principle approach. This device is electrically doped which shows both n and p channel characteristics of a p-i-n FET. This device is designed and originated from a single-walled biomolecular nanotube structure. The p and n regions have been induced at the two ends of the device using electrical doping process. Thus both n and p channel current-voltage response can be obtained within a single nano-scale device at room temperature operation. The device is 3.35nm long and 1.4nm wide. The quasi-ballistic quantum transmission property reveals impressive and almost ideal current-voltage characteristics of the FET. Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) gap reveals the possibility of quasi-ballistic coherent transmission of the device. The electronic properties based on Molecular Projected Self-consistent Hamiltonian are analyzed using Hilbert space spanned basis functions. The maximum tunneling current observed for the bio-molecular FET is 15.9µA for n-channel and 13.8µA for p-channel. The device is operated in atomic scale regime with 1000THz frequency. The present results reveal the role of quantum-ballistic tunneling phenomenon in the current-voltage characteristics and channel conductance properties of the bio nanotube structure, which is useful in future generation nano-electronics.


Subject(s)
Adenine/chemistry , Nanotubes, Carbon/chemistry , Electronics/methods , Nanotechnology/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...