Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Microbiome ; 18(1): 34, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37072776

ABSTRACT

BACKGROUND: We aimed to identify bacteria able to grow in the presence of several antibiotics including the ultra-broad-spectrum antibiotic meropenem in a British agricultural soil by combining DNA stable isotope probing (SIP) with high throughput sequencing. Soil was incubated with cefotaxime, meropenem, ciprofloxacin and trimethoprim in 18O-water. Metagenomes and the V4 region of the 16S rRNA gene from the labelled "heavy" and the unlabelled "light" SIP fractions were sequenced. RESULTS: An increase of the 16S rRNA copy numbers in the "heavy" fractions of the treatments with 18O-water compared with their controls was detected. The treatments resulted in differences in the community composition of bacteria. Members of the phyla Acidobacteriota (formally Acidobacteria) were highly abundant after two days of incubation with antibiotics. Pseudomonadota (formally Proteobacteria) including Stenotrophomonas were prominent after four days of incubation. Furthermore, a metagenome-assembled genome (MAG-1) from the genus Stenotrophomonas (90.7% complete) was retrieved from the heavy fraction. Finally, 11 antimicrobial resistance genes (ARGs) were identified in the unbinned-assembled heavy fractions, and 10 ARGs were identified in MAG-1. In comparison, only two ARGs from the unbinned-assembled light fractions were identified. CONCLUSIONS: The results indicate that both non-pathogenic soil-dwelling bacteria as well as potential clinical pathogens are present in this agricultural soil and several ARGs were identified from the labelled communities, but it is still unclear if horizontal gene transfer between these groups can occur.

2.
Glob Chang Biol ; 29(8): 2141-2155, 2023 04.
Article in English | MEDLINE | ID: mdl-36732877

ABSTRACT

Grazing by large mammalian herbivores impacts climate as it can favor the size and stability of a large carbon (C) pool in the soils of grazing ecosystems. As native herbivores in the world's grasslands, steppes, and savannas are progressively being displaced by livestock, it is important to ask whether livestock can emulate the functional roles of their native counterparts. While livestock and native herbivores can have remarkable similarity in their traits, they can differ greatly in their impacts on vegetation composition which can affect soil-C. It is uncertain how these similarities and differences impact soil-C via their influence on microbial decomposers. We test competing alternative hypotheses with a replicated, long-term, landscape-level, grazing-exclusion experiment to ask whether livestock in the Trans-Himalayan ecosystem of northern India can match decadal-scale (2005-2016) soil-C stocks under native herbivores. We evaluate multiple lines of evidence from 17 variables that influence soil-C (quantity and quality of C-input from plants, microbial biomass and metabolism, microbial community composition, eDNA, veterinary antibiotics in soil), and assess their inter-relationships. Livestock and native herbivores differed in their effects on several soil microbial processes. Microbial carbon use efficiency (CUE) was 19% lower in soils under livestock. Compared to native herbivores, areas used by livestock contained 1.5 kg C m-2 less soil-C. Structural equation models showed that alongside the effects arising from plants, livestock alter soil microbial communities which is detrimental for CUE, and ultimately also for soil-C. Supporting evidence pointed toward a link between veterinary antibiotics used on livestock, microbial communities, and soil-C. Overcoming the challenges of sequestering antibiotics to minimize their potential impacts on climate, alongside microbial rewilding under livestock, may reconcile the conflicting demands from food-security and ecosystem services. Conservation of native herbivores and alternative management of livestock is crucial for soil-C stewardship to envision and achieve natural climate solutions.


Subject(s)
Ecosystem , Herbivory , Animals , Carbon , Livestock , Soil/chemistry , Plants , Grassland , Mammals
3.
Proc Natl Acad Sci U S A ; 119(43): e2211317119, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36252005

ABSTRACT

Grazing by mammalian herbivores can be a climate mitigation strategy as it influences the size and stability of a large soil carbon (soil-C) pool (more than 500 Pg C in the world's grasslands, steppes, and savannas). With continuing declines in the numbers of large mammalian herbivores, the resultant loss in grazer functions can be consequential for this soil-C pool and ultimately for the global carbon cycle. While herbivore effects on the size of the soil-C pool and the conditions under which they lead to gain or loss in soil-C are becoming increasingly clear, their effect on the equally important aspect of stability of soil-C remains unknown. We used a replicated long-term field experiment in the Trans-Himalayan grazing ecosystem to evaluate the consequences of herbivore exclusion on interannual fluctuations in soil-C (2006 to 2021). Interannual fluctuations in soil-C and soil-N were 30 to 40% higher after herbivore exclusion than under grazing. Structural equation modeling suggested that grazing appears to mediate the stabilizing versus destabilizing influences of nitrogen (N) on soil-C. This may explain why N addition stimulates soil-C loss in the absence of herbivores around the world. Herbivore loss, and the consequent decline in grazer functions, can therefore undermine the stability of soil-C. Soil-C is not inert but a very dynamic pool. It can provide nature-based climate solutions by conserving and restoring a functional role of large mammalian herbivores that extends to the stoichiometric coupling between soil-C and soil-N.


Subject(s)
Herbivory , Soil , Animals , Carbon , Ecosystem , Grassland , Mammals , Nitrogen , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...