Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Pancreas ; 53(3): e260-e267, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38345909

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease due to the lack of early detection. Because chronic pancreatitis (CP) patients are a high-risk group for pancreatic cancer, this study aimed to assess the differential miRNA profile in pancreatic tissue of patients with CP and pancreatic cancer. METHODS: MiRNAs were isolated from formalin-fixed paraffin-embedded pancreatic tissue of 22 PDAC patients, 18 CP patients, and 10 normal pancreatic tissues from autopsy (C) cases and processed for next-generation sequencing. Known and novel miRNAs were identified and analyzed for differential miRNA expression, target prediction, and pathway enrichment between groups. RESULTS: Among the miRNAs identified, 166 known and 17 novel miRNAs were found exclusively in PDAC tissues, while 106 known and 10 novel miRNAs were found specifically in CP tissues. The pathways targeted by PDAC-specific miRNAs and differentially expressed miRNAs between PDAC versus CP tissues and PDAC versus control tissues were the proteoglycans pathway, Hippo signaling pathway, adherens junction, and transforming growth factor-ß signaling pathway. CONCLUSIONS: This study resulted in a set of exclusive and differentially expressed miRNAs in PDAC and CP can be assessed for their diagnostic value. In addition, studying the role of miRNA-target gene interactions in carcinogenesis may open new therapeutic avenues.


Subject(s)
Carcinoma, Pancreatic Ductal , MicroRNAs , Pancreatic Neoplasms , Pancreatitis, Chronic , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Pancreas/pathology , Pancreatitis, Chronic/diagnosis , Pancreatitis, Chronic/genetics , Pancreatitis, Chronic/complications , Pancreatic Hormones/metabolism , Gene Expression Profiling
2.
Noncoding RNA Res ; 9(1): 66-75, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38075203

ABSTRACT

Background: Prostate cancer, the second most prevalent malignancy among men, poses a significant threat to affected patients' well-being due to its poor prognosis. Novel biomarkers are required to enhance clinical outcomes and tailor personalized treatments. Herein, we describe our research to explore the prognostic value of long non-coding RNAs (lncRNAs) deregulated by copy number variations (CNVs) in prostate cancer. Methods: The study employed an integrative multi-omics data analysis of the prostate cancer transcriptomic, CNV and methylation datasets to identify prognosis-related subtypes. Subtype-specific expression profiles of protein-coding genes (PCGs) and lncRNAs were determined. We analysed CNV patterns of lncRNAs across the genome to identify subtype-specific lncRNAs with CNV changes. LncRNAs exhibiting significant amplification or deletion and a positive correlation were designated CNV-deregulated lncRNAs. A prognostic risk score model was subsequently developed using these CNV-driven lncRNAs. Results: Six molecular subtypes of prostate cancer were identified, demonstrating significant differences in prognosis (P = 0.034). The CNV profiles of subtype-specific lncRNAs were examined, revealing their correlation with CNV amplification or deletion. Six lncRNAs (CCAT2, LINC01593, LINC00276, GACAT2, LINC00457, LINC01343) were selected based on significant CNV amplifications or deletions using a rigorous univariate Cox proportional risk regression model. A robust risk score model was developed, stratifying patients into high-risk and low-risk categories. Notably, our prognostic model based on these six lncRNAs exhibited exceptional predictive capabilities for recurrence-free survival (RFS) in prostate cancer patients (P = 0.024). Conclusions: Our study successfully identified a prognostic risk score model comprising six CNV-driven lncRNAs that could potentially be prognostic biomarkers for prostate cancer. These lncRNA signatures are closely associated with RFS, providing promising prospects for improved patient prognostication and personalized therapeutic strategies for novel prostate cancer treatment.

3.
Comput Struct Biotechnol J ; 20: 1618-1631, 2022.
Article in English | MEDLINE | ID: mdl-35465161

ABSTRACT

Tumor heterogeneity and the unclear metastasis mechanisms are the leading cause for the unavailability of effective targeted therapy for Triple-negative breast cancer (TNBC), a breast cancer (BrCa) subtype characterized by high mortality and high frequency of distant metastasis cases. The identification of prognostic biomarker can improve prognosis and personalized treatment regimes. Herein, we collected gene expression datasets representing TNBC and Non-TNBC BrCa. From the complete dataset, a subset reflecting solely known cancer driver genes was also constructed. Recursive Feature Elimination (RFE) was employed to identify top 20, 25, 30, 35, 40, 45, and 50 gene signatures that differentiate TNBC from the other BrCa subtypes. Five machine learning algorithms were employed on these selected features and on the basis of model performance evaluation, it was found that for the complete and driver dataset, XGBoost performs the best for a subset of 25 and 20 genes, respectively. Out of these 45 genes from the two datasets, 34 genes were found to be differentially regulated. The Kaplan-Meier (KM) analysis for Distant Metastasis Free Survival (DMFS) of these 34 differentially regulated genes revealed four genes, out of which two are novel that could be potential prognostic genes (POU2AF1 and S100B). Finally, interactome and pathway enrichment analyses were carried out to investigate the functional role of the identified potential prognostic genes in TNBC. These genes are associated with MAPK, PI3-AkT, Wnt, TGF-ß, and other signal transduction pathways, pivotal in metastasis cascade. These gene signatures can provide novel molecular-level insights into metastasis.

4.
PLoS One ; 17(2): e0262686, 2022.
Article in English | MEDLINE | ID: mdl-35113898

ABSTRACT

We developed the DriverFuse package to integrate orthogonal data types such as Structural Variants (SV) and Copy Number Variations (CNV) to characterize fusion genes in cancer datasets. A fusion gene is reported as a driver or passenger fusion gene, based on mapping SV and CNV profiles. DriverFuse generates a fusion plot of fusion genes with their mapping SV, CNV profile, domain architecture and classification of its role in cancer. The analysis facilitates discrimination of driver fusions from passenger fusions. To demonstrate the utility of DriverFuse, we analyzed two datasets, one each for CCLE (Cancer Cell Line Encyclopedia) for lung cancer and HCC1395BL for breast cancer. The analysis validates the driver fusion genes that are already reported for the datasets. Thus, DriverFuse is a valuable tool for studying the driver fusion genes in cancers, enabling the identification of recurrent complex rearrangements that provide intuitive insights into disease driver events.


Subject(s)
DNA Copy Number Variations
5.
Heliyon ; 7(1): e06000, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33521362

ABSTRACT

Pancreatic Ductal Adenocarcinoma (PDAC) is an aggressive form of pancreatic cancer that typically manifests itself at an advanced stage and does not respond to most treatment modalities. The survival rate of a PDAC patient is less than 5%, with a median survival of just a couple of months. A better understanding of the molecular pathology of PDAC is needed to guide research for the development of better clinical treatment modalities for PDAC patients. Gene expression studies performed to date have identified different subtypes of PDAC with prognostic and clinical relevance. Subtypes identified to date are highly heterogeneous since pancreatic cancer is heterogeneous cancer. Tumor microenvironment and stroma constitute a major chunk of PDAC and contribute to the heterogeneity. Better subtyping methods are need of the hour for better prognosis and classification of PDAC for future personalized treatment. In this work, we have performed an integrated analysis of DNA methylation and gene expression datasets to provide better mechanistic and molecular insights into Pancreatic cancers, especially PDAC. The use of varied and diverse datasets has provided valuable insights into different cancer types and can play an integral role in revealing the complex nature of underlying biological mechanisms. We performed subtyping of TCGA-PAAD gene expression and methylation datasets into different subtypes using state-of-the-art normalization methods and unsupervised clustering methods that reveal latent hidden factors, leading to additional insights for subtyping. Differential expression and differential methylation were performed for each of the subtypes obtained from clustering. Our analysis gave a consensus of five cluster solution with relevant pathways like MAPK, MET. The five subtypes corresponded to the tumor and stromal subtypes. This analysis helps in distinguishing and identifying different subtypes based on enriched putative genes. These results help propose novel experimentally-verifiable PDAC subtyping and demonstrate that using varied data sets and integrated methods can contribute to disease prognostication and precision medicine in PDAC treatment.

6.
Sci Rep ; 10(1): 4113, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32139710

ABSTRACT

Early detection of breast cancer and its correct stage determination are important for prognosis and rendering appropriate personalized clinical treatment to breast cancer patients. However, despite considerable efforts and progress, there is a need to identify the specific genomic factors responsible for, or accompanying Invasive Ductal Carcinoma (IDC) progression stages, which can aid the determination of the correct cancer stages. We have developed two-class machine-learning classification models to differentiate the early and late stages of IDC. The prediction models are trained with RNA-seq gene expression profiles representing different IDC stages of 610 patients, obtained from The Cancer Genome Atlas (TCGA). Different supervised learning algorithms were trained and evaluated with an enriched model learning, facilitated by different feature selection methods. We also developed a machine-learning classifier trained on the same datasets with training sets reduced data corresponding to IDC driver genes. Based on these two classifiers, we have developed a web-server Duct-BRCA-CSP to predict early stage from late stages of IDC based on input RNA-seq gene expression profiles. The analysis conducted by us also enables deeper insights into the stage-dependent molecular events accompanying IDC progression. The server is publicly available at http://bioinfo.icgeb.res.in/duct-BRCA-CSP.


Subject(s)
Breast Neoplasms/classification , Carcinoma, Ductal, Breast/classification , Supervised Machine Learning , Transcriptome , Algorithms , Breast Neoplasms/genetics , Carcinoma, Ductal, Breast/genetics , Databases, Genetic , Datasets as Topic , Early Detection of Cancer , Female , Gene Ontology , Humans , Machine Learning , Microarray Analysis , Models, Biological , Neoplasm Staging , Protein Interaction Maps , RNA, Neoplasm , RNA-Seq , Reproducibility of Results
7.
J Ethnopharmacol ; 113(3): 387-99, 2007 Sep 25.
Article in English | MEDLINE | ID: mdl-17714898

ABSTRACT

The traditional uses of medicinal plants in healthcare practices are providing clues to new areas of research; hence its importance is now well recognized. However, information on the uses of indigenous plants for medicine is not well documented from many rural areas of Rajasthan including Churu district. The study aimed to look into the diversity of plant resources that are used by local people for curing various ailments. Questionnaire surveys, participatory observations and field visits were planned to elicit information on the uses of various plants. It was found that 68 plant species are commonly used by the local people for curing various diseases. In most of the cases (31%) leaves were used. The interviewees mentioned 188 plant usages. Those most frequently reported had therapeutic value for treating fever, rheumatism, diarrhea, asthma and piles. The knowledge about the total number of medicinal plants available in that area and used by the interviewees was positively correlated with people's age, indicating that this ancient knowledge tends to disappear in the younger generation.


Subject(s)
Medicine, Traditional , Phytotherapy/statistics & numerical data , Plants, Medicinal , Adult , Female , Humans , India , Interviews as Topic , Male , Plant Preparations/therapeutic use , Rural Population
SELECTION OF CITATIONS
SEARCH DETAIL
...