Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Pharmacol ; 75: 103322, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31877500

ABSTRACT

In our previous study we demonstrated that the fruit ripening retardant Daminozide or Alar causes change in life history traits, distortion of adult wing structure, DNA damage in brain cells and mutagenic effects in fruit fly Drosophila melanogaster. As a continuation of the previous study the present work is designed to explore the metabolic modification of Daminozide following ingestion, the effects of Daminozide on the expression of genes which are pivotal for wing development and molecular interactions of Daminozide with those proteins involved in wing patterning. We demonstrated through reporter gene construct assay using X-gal staining method and transgenic Drosophila melanogaster stocks that the vestigial, wingless and decapentaplegic genes in wing imaginal disc from 3rd instar larvae exhibited reduced expression when exposed to Daminozide in compare to control larvae. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) of those genes confirmed that exposure to Daminozide reduces the transcription level of those genes. In silico approach with molecular docking study revealed Daminozide may bind and interfere with the optimal functioning of expressed wing signaling proteins.


Subject(s)
Drosophila melanogaster/physiology , Plant Growth Regulators/toxicity , Succinates/toxicity , Wings, Animal/drug effects , Animals , Genes, Insect/physiology
2.
Interdiscip Toxicol ; 11(1): 27-37, 2018 May.
Article in English | MEDLINE | ID: mdl-30181710

ABSTRACT

Alar (Daminozide) is a plant growth regulator which is widely used as a fruit preservative for apple and mango to prevent pre-harvest fruit drop, promote color development and to delay excessive ripening. The aim of the present work was to demonstrate the effect of Alar on several life history traits, adult morphology, Hsp70 protein expression and in vivo DNA damage in the brain of the model organism Drosophila melanogaster. We assessed the life history and morphological traits including fecundity, developmental time, pupation height, egg-to-adult viability and mean wing length, body length, arista length and sternopleural bristle number of the emerging flies. The results showed a significant delay in the developmental milestones, increase in body length, wing length, arista length, a decrease in fecundity, pupal height and variation in sternopleural bristle number in the treated flies in comparison to the controls. Overexpression of Hsp70 protein suggests alar induced subcellular molecular stress and comet assay validates genotoxicity in the form of DNA damage in the treated larvae. Mutation screening experiment revealed induction of X lined lethal mutation.

SELECTION OF CITATIONS
SEARCH DETAIL
...