Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell ; 35(1): 139-161, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36377770

ABSTRACT

Research into crop yield and resilience has underpinned global food security, evident in yields tripling in the past 5 decades. The challenges that global agriculture now faces are not just to feed 10+ billion people within a generation, but to do so under a harsher, more variable, and less predictable climate, and in many cases with less water, more expensive inputs, and declining soil quality. The challenges of climate change are not simply to breed for a "hotter drier climate," but to enable resilience to floods and droughts and frosts and heat waves, possibly even within a single growing season. How well we prepare for the coming decades of climate variability will depend on our ability to modify current practices, innovate with novel breeding methods, and communicate and work with farming communities to ensure viability and profitability. Here we define how future climates will impact farming systems and growing seasons, thereby identifying the traits and practices needed and including exemplars being implemented and developed. Critically, this review will also consider societal perspectives and public engagement about emerging technologies for climate resilience, with participatory approaches presented as the best approach.


Subject(s)
Agriculture , Soil , Phenotype , Seasons , Stress, Physiological
2.
Plant Direct ; 5(10): e354, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34646976

ABSTRACT

Proton-pumping pyrophosphatases (H+-PPases) have been shown to enhance biomass and yield. However, to date, there has been little work towards identify genes encoding H+-PPases in bread wheat (Triticum aestivum) (TaVPs) and limited knowledge on how the expression of these genes varies across different growth stages and tissue types. In this study, the IWGSC database was used to identify two novel TaVP genes, TaVP4 and TaVP5, and elucidate the complete homeolog sequences of the three known TaVP genes, bringing the total number of bread wheat TaVPs from 9 to 15. Gene expression levels of each TaVP homeolog were assessed using quantitative real-time PCR (qRT-PCR) in four diverse wheat varieties in terms of phenotypic traits related to high vacuolar pyrophosphatase expression. Homeolog expression was analyzed across multiple tissue types and developmental stages. Expression levels of the TaVP homeologs were found to vary significantly between varieties, tissues and plant developmental stages. During early development (Z10 and Z13), expressions of TaVP1 and TaVP2 homeologs were higher in shoot tissue than root tissue, with both shoot and root expression increasing in later developmental stages (Z22). TaVP2-D was expressed in all varieties and tissue types and was the most highly expressed homeolog at all developmental stages. Expression of the TaVP3 homeologs was restricted to developing grain (Z75), while TaVP4 homeolog expression was higher at Z22 than earlier developmental stages. Variation in TaVP4B was detected among varieties at Z22 and Z75, with Buck Atlantico (high biomass) and Scout (elite Australian cultivar) having the highest levels of expression. These findings offer a comprehensive overview of the bread wheat H+-PPase family and identify variation in TaVP homeolog expression that will be of use to improve the growth, yield, and abiotic stress tolerance of bread wheat.

3.
Front Plant Sci ; 11: 273, 2020.
Article in English | MEDLINE | ID: mdl-32256508

ABSTRACT

A fundamental factor to improve crop productivity involves the optimization of reduced carbon translocation from source to sink tissues. Here, we present data consistent with the positive effect that the expression of the Arabidopsis thaliana H+-PPase (AVP1) has on reduced carbon partitioning and yield increases in wheat. Immunohistochemical localization of H+-PPases (TaVP) in spring wheat Bobwhite L. revealed the presence of this conserved enzyme in wheat vasculature and sink tissues. Of note, immunogold imaging showed a plasma membrane localization of TaVP in sieve element- companion cell complexes of Bobwhite source leaves. These data together with the distribution patterns of a fluorescent tracer and [U14C]-sucrose are consistent with an apoplasmic phloem-loading model in wheat. Interestingly, 14C-labeling experiments provided evidence for enhanced carbon partitioning between shoots and roots, and between flag leaves and milk stage kernels in AVP1 expressing Bobwhite lines. In keeping, there is a significant yield improvement triggered by the expression of AVP1 in these lines. Green house and field grown transgenic wheat expressing AVP1 also produced higher grain yield and number of seeds per plant, and exhibited an increase in root biomass when compared to null segregants. Another agriculturally desirable phenotype showed by AVP1 Bobwhite plants is a robust establishment of seedlings.

4.
BMC Plant Biol ; 17(1): 209, 2017 Nov 21.
Article in English | MEDLINE | ID: mdl-29157217

ABSTRACT

BACKGROUND: Selecting for low concentration of Na+ in the shoot provides one approach for tackling salinity stress that adversely affects crop production. Novel alleles for Na+ exclusion can be identified and then introduced into elite crop cultivars. RESULTS: We have identified loci associated with lower Na+ concentration in leaves of durum wheat landraces originating from Afghanistan. Seedlings of two F2 populations derived from crossings between Australian durum wheat (Jandaroi) and two Afghani landraces (AUS-14740 and AUS-14752) were grown hydroponically and evaluated for Na+ and K+ concentration in the third leaf. High heritability was found for both third leaf Na+ concentration and the K+/Na+ ratio in both populations. Further work focussed on line AUS-14740. Bulk segregant analysis using 9 K SNP markers identified two loci significantly associated with third leaf Na+ concentration. Marker regression analysis showed a strong association between all traits studied and a favourable allele originating from AUS-14740 located on the long arm of chromosome 4B. CONCLUSIONS: The candidate gene in the relevant region of chromosome 4B is likely to be the high affinity K+ transporter B1 (HKT1;5-B1). A second locus associated with third leaf Na+ concentration was located on chromosome 3BL, with the favourable allele originating from Jandaroi; however, no candidate gene can be identified.


Subject(s)
Salt-Tolerant Plants/genetics , Sodium/metabolism , Triticum/genetics , Afghanistan , Crosses, Genetic , Genes, Plant/genetics , Genotyping Techniques , Hydroponics , Phenotype , Plant Leaves/chemistry , Plant Leaves/metabolism , Polymorphism, Single Nucleotide/genetics , Potassium/analysis , Potassium/metabolism , Quantitative Trait Loci/genetics , Salt Tolerance , Salt-Tolerant Plants/metabolism , Sodium/analysis , Triticum/metabolism
5.
Rice (N Y) ; 7(1): 16, 2014 Dec.
Article in English | MEDLINE | ID: mdl-26055997

ABSTRACT

BACKGROUND: Soil salinity is an abiotic stress wide spread in rice producing areas, limiting both plant growth and yield. The development of salt-tolerant rice requires efficient and high-throughput screening techniques to identify promising lines for salt affected areas. Advances made in image-based phenotyping techniques provide an opportunity to use non-destructive imaging to screen for salinity tolerance traits in a wide range of germplasm in a reliable, quantitative and efficient way. However, the application of image-based phenotyping in the development of salt-tolerant rice remains limited. RESULTS: A non-destructive image-based phenotyping protocol to assess salinity tolerance traits of two rice cultivars (IR64 and Fatmawati) has been established in this study. The response of rice to different levels of salt stress was quantified over time based on total shoot area and senescent shoot area, calculated from visible red-green-blue (RGB) and fluorescence images. The response of rice to salt stress (50, 75 and 100 mM NaCl) could be clearly distinguished from the control as indicated by the reduced increase of shoot area. The salt concentrations used had only a small effect on the growth of rice during the initial phase of stress, the shoot Na(+) accumulation independent phase termed the 'osmotic stress' phase. However, after 20 d of treatment, the shoot area of salt stressed plants was reduced compared with non-stressed plants. This was accompanied by a significant increase in the concentration of Na(+) in the shoot. Variation in the senescent area of the cultivars IR64 and Fatmawati in response to a high concentration of Na(+) in the shoot indicates variation in tissue tolerance mechanisms between the cultivars. CONCLUSIONS: Image analysis has the potential to be used for high-throughput screening procedures in the development of salt-tolerant rice. The ability of image analysis to discriminate between the different aspects of salt stress (shoot ion-independent stress and shoot ion dependent stress) makes it a useful tool for genetic and physiological studies to elucidate processes that contribute to salinity tolerance in rice. The technique has the potential for identifying the genetic basis of these mechanisms and assisting in pyramiding different tolerance mechanisms into breeding lines.

SELECTION OF CITATIONS
SEARCH DETAIL
...