Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 15(19): 5250-5258, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38722188

ABSTRACT

Chemical transformations in charge transfer states result from the interplay between electronic dynamics and nuclear reorganization along excited-state trajectories. Here, we investigate the ultrafast structural dynamics following photoinduced electron transfer from the metal-metal-to-ligand charge transfer state of an electron donor, a Pt dimer complex, to a covalently linked electron acceptor group using ultrafast time-resolved wide-angle X-ray scattering and optical transient absorption spectroscopy methods to disentangle the interdependence of the excited-state electronic and nuclear dynamics. Following photoexcitation, Pt-Pt bond formation and contraction takes up to 1 ps, much slower than the corresponding process in analogous complexes without electron acceptor groups. Because the Pt-Pt distance change is slow with respect to excited-state electron transfer, it can affect the rate of electron transfer. These results have potential impacts on controlling electron transfer rates via structural alterations to the electron donor group, tuning the charge transfer driving force.

2.
Angew Chem Int Ed Engl ; 62(28): e202304615, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37114904

ABSTRACT

Photoexcited molecular trajectories on potential energy surfaces (PESs) prior to thermalization are intimately connected to the photochemical reaction outcome. The excited-state trajectories of a diplatinum complex featuring photo-activated metal-metal σ-bond formation and associated Pt-Pt stretching motions were detected in real time using femtosecond wide-angle X-ray solution scattering. The observed motions correspond well with coherent vibrational wavepacket motions detected by femtosecond optical transient absorption. Two key coordinates for intersystem crossing have been identified, the Pt-Pt bond length and the orientation of the ligands coordinated with the platinum centers, along which the excited-state trajectories can be projected onto the calculated PESs of the excited states. This investigation has gleaned novel insight into electronic transitions occurring on the time scales of vibrational motions measured in real time, revealing ultrafast nonadiabatic or non-equilibrium processes along excited-state trajectories involving multiple excited-state PESs.

3.
Dalton Trans ; 52(13): 4008-4016, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36880277

ABSTRACT

Dinuclear d8 Pt(II) complexes, where two mononuclear square planar Pt(II) units are bridged in an "A-frame" geometry, possess photophysical properties characterised by either metal-to-ligand-(MLCT) or metal-metal-ligand-to-ligand charge transfer (MMLCT) transitions determined by the distance between the two Pt(II) centres. When using 8-hydroxyquinoline (8HQH) as the bridging ligand to construct novel dinuclear complexes with general formula [C^NPt(µ-8HQ)]2, where C^N is either 2-phenylpyridine (1) or 7,8-benzoquinoline (2), triplet ligand-centered (3LC) photophysics results echoing that in a mononuclear model chromophore, [Pt(8HQ)2] (3). The lengthened Pt-Pt distances of 3.255 Å (1) and 3.243 Å (2) results in a lowest energy absorption centred around 480 nm assigned as having mixed LC/MLCT character by TD-DFT, mirroring the visible absorption spectrum of 3. Additionally, 1 and 2 exhibit 3LC photoluminescence with limited quantum yields (0.008) from broad transitions centred near 680 nm. Photoexcitation of 1-3 leads to an initially prepared excited state that relaxes within 15 ps to a 3LC excited state centred on the 8HQ bridge, which then persists for several microseconds. All the experimental results correspond well with DFT electronic structure calculations.

4.
Faraday Discuss ; 237(0): 259-273, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35642929

ABSTRACT

Ultrafast excited state processes of transition metal complexes (TMCs) are governed by complicated interplays between electronic and nuclear dynamics, which demand a detailed understanding to achieve optimal functionalities of photoactive TMC-based materials for many applications. In this work, we investigated a cyclometalated platinum(II) dimer known to undergo a Pt-Pt bond contraction in the metal-metal-to-ligand-charge-transfer (MMLCT) excited state using femtosecond broadband transient absorption (fs-BBTA) spectroscopy in combination with geometry optimization and normal mode calculations. Using a sub-20 fs pump and broadband probe pulses in fs-BBTA spectroscopy, we were able to correlate the coherent vibrational wavepacket (CVWP) evolution with the stimulated emission (SE) dynamics of the 1MMLCT state. The results demonstrated that the 145 cm-1 CVWP motions with the damping times of ∼0.9 ps and ∼2 ps originate from coherent Pt-Pt stretching vibrations in the singlet and triplet MMLCT states, respectively. On the basis of excited state potential energy surface calculations in our previous work, we rationalized that the CVWP transfer from the Franck-Condon (FC) state to the 3MMLCT state was mediated by a triplet ligand-centered (3LC) intermediate state through two step intersystem crossing (ISC) on a time scale shorter than a period of the Pt-Pt stretching wavepacket motions. Moreover, it was found that the CVWP motion had 110 cm-1 frequency decays with the damping time of ∼0.2 ps, matching the time constant of 0.253 ps, corresponding to a redshift in the SE feature at early times. This observation indicates that the Pt-Pt bond contraction changes the stretching frequency from 110 to 145 cm-1 and stabilizes the 1MMLCT state relative to the 3LC state with a ∼0.2 ps time scale. Thus, the ultrafast ISC from the 1MMLCT to the 3LC states occurs before the Pt-Pt bond shortening. The findings herein provide insight into understanding the impact of Pt-Pt bond contraction on the ultrafast branching of the 1MMLCT population into the direct (1MMLCT → 3MMLCT) and indirect ISC pathways (1MMLCT → 3LC → 3MMLCT) in the Pt(II) dimer. These results revealed intricate excited state electronic and nuclear motions that could steer the reaction pathways with a level of detail that has not been achieved before.


Subject(s)
Coordination Complexes , Vibration , Ligands , Platinum/chemistry , Quantum Theory
5.
Inorg Chem ; 61(1): 121-130, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34955020

ABSTRACT

The investigation of two distinct species of square planar dinuclear Pt(II) dimers based on anti-[Pt(C∧N)(µ-N∧S)]2, where C∧N is either 2-phenylpyridine (ppy) or benzo(h)quinoline (bzq) and N∧S is pyridine-2-thiol (pyt), 6-methylpyridine-2-thiol (Mpyt), or 2-quinolinethiol (2QT), is presented. Each molecule was thoroughly characterized with electronic structure calculations, static UV-vis and photoluminescence (PL) spectroscopy, and cyclic voltammetry, along with transient absorbance and time-gated PL experiments. These visible absorbing chromophores feature metal-metal-to-ligand charge-transfer (MMLCT) excited states that originate from intramolecular d8-d8 metal-metal σ-interactions and are manifested in the ground- and excited-state properties of these molecules. All five molecules reported (anti-[Pt(ppy)(µ-Mpyt)]2 could not be isolated), three of which are newly conceived here, possess electronic absorptions past 500 nm and high quantum yield PL emission with spectra extending into the far red (λem > 700 nm), originating from the charge-transfer state in each instance. Each chromophore displays excited-state decay kinetics adequately modeled by single exponentials as recorded using dynamic absorption and PL experiments; each technique yields similar decay kinetics. The combined data illustrate that pyridyl and quinoline-thiolates in conjunction with select cyclometalates represent classes of MMLCT chromophores that exhibit excited-state properties suitable for promoting light-energized chemical reactions and provide a molecular platform suitable for evaluating coherence phenomena in transient metal-metal bond-forming photochemistry.

6.
J Phys Chem A ; 125(43): 9438-9449, 2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34699219

ABSTRACT

A series of platinum(II) bimetallic complexes were studied to investigate the effects of ligands on both the geometric and electronic structure. Modulating the Pt-Pt distance through the bridging ligand architecture was found to dictate the nature of the lowest energy electronic transitions, localized in one-half of the molecule or delocalized across the entire molecule. By reducing the separation between the platinum atoms, the lowest energy electronic transitions will be dominated by the metal-metal-to-ligand charge transfer transition. Conversely, by increasing the distance between the platinum atoms, the lowest electronic transition will be largely localized metal-to-ligand charge transfer or ligand centered in nature. Additionally, the cyclometalating ligands were observed to have a noticeable stabilizing effect on the triplet excited states as the conjugation increased, arising from geometric reorientation and increased electron delocalization of the ligands. Such stabilization of the triplet state energy has been shown to alter the excited state potential energy landscape as well as the excited state trajectory.

7.
J Phys Chem A ; 125(40): 8891-8898, 2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34597043

ABSTRACT

Interactions between metal centers in dimeric transition metal complexes (TMCs) play important roles in their excited-state energetics and pathways and, thus, affect their photophysical properties relevant to their applications, for example, photoluminescent materials and photocatalysis. Here, we report electronic and nuclear structural dynamics studies of two photoexcited pyrazolate-bridged [Pt(ppy)(µ-R2pz)]2-type Pt(II) dimers (ppy = 2-phenylpyridine, µ-R2pz = 3,5-substituted pyrazolate): [Pt(ppy)(µ-H2pz)]2 (1) and [Pt(NDI-ppy)(µ-Ph2pz)]2 (2, NDI = 1,4,5,8-naphthalenediimide), both of which have distinct ground-state Pt-Pt distances. X-ray transient absorption (XTA) spectroscopy at the Pt LIII-edge revealed a new d-orbital vacancy due to the one-electron oxidation of the Pt centers in 1 and 2. However, while a transient Pt-Pt contraction was observed in 2, such an effect was completely absent in 1, demonstrating how the excited states of these complexes are determined by the overlap of the Pt (dz2) orbitals, which is tuned by the steric bulk of the pyrazolate R-groups in the 3- and 5-positions. In tandem with analysis of the Pt-Pt distance structural parameter, we observed photoinduced electron transfer in 2 featuring a covalently linked NDI acceptor on the ppy ligand. The formation and subsequent decay of the NDI radical anion absorption signals were detected upon photoexcitation using optical transient absorption spectroscopy. The NDI radical anion decayed on the same time scale, hundreds of picoseconds, as that of the d-orbital vacancy signal of the oxidized Pt-Pt core observed in the XTA measurements. The data indicated an ultrafast formation of the charge-separated state and subsequent charge recombination to the original Pt(II-II) species.

8.
J Phys Chem Lett ; 12(29): 6794-6803, 2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34270259

ABSTRACT

Intricate potential energy surfaces (PESs) of some transition metal complexes (TMCs) pose challenges in mapping out initial excited-state pathways that could influence photochemical outcomes. Ultrafast intersystem crossing (ISC) dynamics of four structurally related platinum(II) dimer complexes were examined by detecting their coherent vibrational wavepacket (CVWP) motions of Pt-Pt stretching mode in the metal-metal-to-ligand-charge-transfer excited states. Structurally dependent CVWP behaviors (frequency, dephasing time, and oscillation amplitudes) were captured by femtosecond transient absorption spectroscopy, analyzed by short-time Fourier transformation, and rationalized by quantum mechanical calculations, revealing dual ISC pathways. The results suggest that the ligands could fine-tune the PESs to influence the proximity of the conical intersections of the excited states with the Franck-Condon state and thus to control the branching ratio of the dual ISC pathways. This comparative study presents future opportunities in control excited-state trajectories of TMCs via ligand structures.

9.
Inorg Chem ; 57(3): 1298-1310, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29336558

ABSTRACT

A series of four anti-disposed dinuclear platinum(II) complexes featuring metal-metal-to-ligand charge-transfer (MMLCT) excited states, bridged by either 2-hydroxy-6-methylpyridine or 2-hydroxy-6-phenylpyridine and cyclometalated with 7,8-benzoquinoline or 2-phenylpyridine, are presented. The 2-hydroxypyridine bridging ligands control intramolecular d8-d8 metal-metal σ interactions, affecting the frontier orbitals' electronic structure, resulting in marked changes to the ground- and excited-state properties of these complexes. Three of these molecules possess reversible one-electron oxidations in cyclic voltammetry experiments as a result of strong intramolecular metallophilic interactions. In this series of molecules, X-ray crystallography revealed Pt-Pt distances ranging between 2.815 and 2.878 Å; the former represents the shortest reported metal-metal distance for platinum(II) dimers possessing low-energy MMLCT transitions. All four molecules reported here display visible absorption bands beyond 500 nm and feature MMLCT-based red photoluminescence (PL) above 700 nm at room temperature with high PL quantum yields (up to 4%) and long excited-state lifetimes (up to 341 ns). The latter were recorded using both transient PL and transient absorption experiments that self-consistently yielded quantitatively identical excited-state lifetimes. The energy-gap law was successfully applied to this series of chromophores, documenting this behavior for the first time in molecules possessing MMLCT excited states. The combined data illustrate that entirely new classes of MMLCT chromophores can be envisioned using bridging pyridyl hydroxides in cooperation with various C^N cyclometalates to achieve photophysical properties suitable for excited-state electron- and energy-transfer chemistry.

10.
ACS Appl Mater Interfaces ; 8(6): 3853-60, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26788585

ABSTRACT

A series of phosphonate-derivatized, high redox potential porphyrins with mesityl, pentafluorophenyl, and heptafluoropropyl meso-substituents were synthesized by acid-catalyzed condensation reactions. Ground and excited state redox potentials in the series were varied systematically with the electron-donating or electron-accepting nature of the meso-substitutents. The extent of excitation and injection by porphyrin singlet excited states surface-bound to SnO2/TiO2 core/shell metal oxide nanoparticle films varies with the excited state reduction potential, E°(')(P(+)/P*). With the mesityl-substituted porphyrin, high current density and sustained photocurrents are observed at pH 7 with the addition of the electron transfer donor hydroquinone.

SELECTION OF CITATIONS
SEARCH DETAIL
...