Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 252: 114587, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36758508

ABSTRACT

A large amount of lignocellulosic waste is generated every day in the world, and their accumulation in the agroecosystems, integration in soil compositions, or incineration for energy production has severe environmental pollution effects. Using enzymes as biocatalysts for the biodegradation of lignocellulosic materials, especially in harsh processing conditions, is a practical step towards green energy and environmental biosafety. Hence, the current study focuses on enzyme computationally screened from camel rumen metagenomics data as specialized microbiota that have the capacity to degrade lignocellulosic-rich and recalcitrant materials. The novel hyperthermostable xylanase named PersiXyn10 with the performance at extreme conditions was proper activity within a broad temperature (30-100 â„ƒ) and pH range (4.0-11.0) but showed the maximum xylanolytic activity in severe alkaline and temperature conditions, pH 8.0 and temperature 90 â„ƒ. Also, the enzyme had highly resistant to metals, surfactants, and organic solvents in optimal conditions. The introduced xylanase had unique properties in terms of thermal stability by maintaining over 82% of its activity after 15 days of incubation at 90 â„ƒ. Considering the crucial role of hyperthermostable xylanases in the paper industry, the PersiXyn10 was subjected to biodegradation of paper pulp. The proper performance of hyperthermostable PersiXyn10 on the paper pulp was confirmed by structural analysis (SEM and FTIR) and produced 31.64 g/L of reducing sugar after 144 h hydrolysis. These results proved the applicability of the hyperthermostable xylanase in biobleaching and saccharification of lignocellulosic biomass for declining the environmental hazards.


Subject(s)
Endo-1,4-beta Xylanases , Microbiota , Animals , Endo-1,4-beta Xylanases/chemistry , Endo-1,4-beta Xylanases/metabolism , Lignin/metabolism , Temperature , Hydrolysis
2.
Front Microbiol ; 13: 1056364, 2022.
Article in English | MEDLINE | ID: mdl-36687660

ABSTRACT

Some enzymes can catalyze more than one chemical conversion for which they are physiologically specialized. This secondary function, which is called underground, promiscuous, metabolism, or cross activity, is recognized as a valuable feature and has received much attention for developing new catalytic functions in industrial applications. In this study, a novel bifunctional xylanase/ß-glucosidase metagenomic-derived enzyme, PersiBGLXyn1, with underground ß-glucosidase activity was mined by in-silico screening. Then, the corresponding gene was cloned, expressed and purified. The PersiBGLXyn1 improved the degradation efficiency of organic solvent pretreated coffee residue waste (CRW), and subsequently the production of bioethanol during a separate enzymatic hydrolysis and fermentation (SHF) process. After characterization, the enzyme was immobilized on a nanocellulose (NC) carrier generated from sugar beet pulp (SBP), which remarkably improved the underground activity of the enzyme up to four-fold at 80°C and up to two-fold at pH 4.0 compared to the free one. The immobilized PersiBGLXyn1 demonstrated 12 to 13-fold rise in half-life at 70 and 80°C for its underground activity. The amount of reducing sugar produced from enzymatic saccharification of the CRW was also enhanced from 12.97 g/l to 19.69 g/l by immobilization of the enzyme. Bioethanol production was 29.31 g/l for free enzyme after 72 h fermentation, while the immobilized PersiBGLXyn1 showed 51.47 g/l production titre. Overall, this study presented a cost-effective in-silico metagenomic approach to identify novel bifunctional xylanase/ß-glucosidase enzyme with underground ß-glucosidase activity. It also demonstrated the improved efficacy of the underground activities of the bifunctional enzyme as a promising alternative for fermentable sugars production and subsequent value-added products.

3.
Front Microbiol ; 12: 713125, 2021.
Article in English | MEDLINE | ID: mdl-34526977

ABSTRACT

α-Amylases are among the very critical enzymes used for different industrial purposes. Most α-amylases cannot accomplish the requirement of industrial conditions and easily lose their activity in harsh environments. In this study, a novel α-amylase named PersiAmy1 has been identified through the multistage in silico screening pipeline from the rumen metagenomic data. The long-term storage of PersiAmy1 in low and high temperatures demonstrated 82.13 and 71.01% activities after 36 days of incubation at 4 and 50°C, respectively. The stable α-amylase retained 61.09% of its activity after 180 min of incubation at 90°C and was highly stable in a broad pH range, showing 60.48 and 86.05% activities at pH 4.0 and pH 9.0 after 180 min of incubation, respectively. Also, the enzyme could resist the high-salinity condition and demonstrated 88.81% activity in the presence of 5 M NaCl. PersiAmy1 showed more than 74% activity in the presence of various metal ions. The addition of the detergents, surfactants, and organic solvents did not affect the α-amylase activity considerably. Substrate spectrum analysis showed that PersiAmy1 could act on a wide array of substrates. PersiAmy1 showed high stability in inhibitors and superb activity in downstream conditions, thus useful in detergent and baking industries. Investigating the applicability in detergent formulation, PersiAmy1 showed more than 69% activity after incubation with commercial detergents at different temperatures (30-50°C) and retained more than 56% activity after incubation with commercial detergents for 3 h at 10°C. Furthermore, the results of the wash performance analysis exhibited a good stain removal at 10°C. The power of PersiAmy1 in the bread industry revealed soft, chewable crumbs with improved volume and porosity compared with control. This study highlights the intense power of robust novel PersiAmy1 as a functional bio-additive in many industrial applications.

4.
Int J Comput Biol Drug Des ; 1(1): 88-101, 2008.
Article in English | MEDLINE | ID: mdl-20055003

ABSTRACT

Genome rearrangements have been modelled by a variety of primitives such as reversals, transpositions, block moves and block interchanges. We consider such a genome rearrangement primitive Strip Exchanges. Given a permutation, the challenge is to sort it by using minimum number of strip exchanges. A strip exchanging move interchanges the positions of two chosen strips so that they merge with other strips. The strip exchange problem is to sort a permutation using minimum number of strip exchanges. We present here the first non-trivial 2-approximation algorithm to this problem. We also observe that sorting by strip-exchanges is fixed-parameter-tractable. Lastly we discuss the application of strip exchanges in a different area Optical Character Recognition (OCR) with an example.


Subject(s)
Algorithms , Gene Rearrangement , Models, Genetic , Computational Biology , Computer Simulation , Genome
SELECTION OF CITATIONS
SEARCH DETAIL
...