Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(3)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38339617

ABSTRACT

Across five studies, we present the preliminary technical validation of an infant-wearable platform, LittleBeats™, that integrates electrocardiogram (ECG), inertial measurement unit (IMU), and audio sensors. Each sensor modality is validated against data from gold-standard equipment using established algorithms and laboratory tasks. Interbeat interval (IBI) data obtained from the LittleBeats™ ECG sensor indicate acceptable mean absolute percent error rates for both adults (Study 1, N = 16) and infants (Study 2, N = 5) across low- and high-challenge sessions and expected patterns of change in respiratory sinus arrythmia (RSA). For automated activity recognition (upright vs. walk vs. glide vs. squat) using accelerometer data from the LittleBeats™ IMU (Study 3, N = 12 adults), performance was good to excellent, with smartphone (industry standard) data outperforming LittleBeats™ by less than 4 percentage points. Speech emotion recognition (Study 4, N = 8 adults) applied to LittleBeats™ versus smartphone audio data indicated a comparable performance, with no significant difference in error rates. On an automatic speech recognition task (Study 5, N = 12 adults), the best performing algorithm yielded relatively low word error rates, although LittleBeats™ (4.16%) versus smartphone (2.73%) error rates were somewhat higher. Together, these validation studies indicate that LittleBeats™ sensors yield a data quality that is largely comparable to those obtained from gold-standard devices and established protocols used in prior research.


Subject(s)
Posture , Walking , Adult , Humans , Motion , Walking/physiology , Posture/physiology , Standing Position , Algorithms , Biomechanical Phenomena
2.
Nicotine Tob Res ; 15(10): 1651-4, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23703731

ABSTRACT

Much is known about the immediate and predictive antecedents of smoking lapse, which include situations (e.g., presence of other smokers), activities (e.g., alcohol consumption), and contexts (e.g., outside). This commentary suggests smartphone-based systems could be used to infer these predictive antecedents in real time and provide the smoker with just-in-time intervention. The smartphone of today is equipped with an array of sensors, including GPS, cameras, light sensors, barometers, accelerometers, and so forth, that provide information regarding physical location, human movement, ambient sounds, and visual imagery. We propose that libraries of algorithms to infer these antecedents can be developed and then incorporated into diverse mobile research and personalized treatment applications. While a number of challenges to the development and implementation of such applications are recognized, our field benefits from a database of known antecedents to a problem behavior, and further research and development in this exciting area are warranted.


Subject(s)
Cell Phone , Smoking Prevention , Algorithms , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...