Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 127(7): 076802, 2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34459648

ABSTRACT

Many advancements have been made in the field of topological mechanics. The majority of the work, however, concerns the topological invariant in a linear theory. In this Letter, we present a generic prescription to define topological indices that accommodates nonlinear effects in mechanical systems without taking any approximation. Invoking the tools of differential geometry, a Z-valued quantity in terms of a topological index in differential geometry known as the Poincaré-Hopf index, which features the topological invariant of nonlinear zero modes (ZMs), is predicted. We further identify one type of topologically protected solitons that are robust to disorders. Our prescription constitutes a new direction of searching for novel topologically protected nonlinear ZMs in the future.

2.
Phys Rev Lett ; 121(17): 177201, 2018 Oct 26.
Article in English | MEDLINE | ID: mdl-30411943

ABSTRACT

Kagome antiferromagnets are known to be highly frustrated and degenerate when they possess simple, isotropic interactions. We consider the entire class of these magnets when their interactions are spatially anisotropic. We do so by identifying a certain class of systems whose degenerate ground states can be mapped onto the folding motions of a generalized "spin origami" two-dimensional mechanical sheet. Some such anisotropic spin systems, including Cs_{2}ZrCu_{3}F_{12}, map onto flat origami sheets, possessing extensive degeneracy similar to isotropic systems. Others, such as Cs_{2}CeCu_{3}F_{12}, can be mapped onto sheets with nonzero Gaussian curvature, leading to more mechanically stable corrugated surfaces. Remarkably, even such distortions do not always lift the entire degeneracy, instead permitting a large but subextensive space of zero-energy modes. We show that for Cs_{2}CeCu_{3}F_{12}, due to an additional point group symmetry associated with the structure, these modes are "Dirac" line nodes with a double degeneracy protected by a topological invariant. The existence of mechanical analogs thus serves to identify and explicate the robust degeneracy of the spin systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...