Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 258(5087): 1466-70, 1992 Nov 27.
Article in English | MEDLINE | ID: mdl-17755108

ABSTRACT

The South Tibetan detachment system separates the high-grade metamorphic core of the Himalayan orogen from its weakly metamorphosed suprastructure. It is thought to have developed in response to differences in gravitational potential energy produced by crustal thickening across the mountain front. Geochronologic data from the Rongbuk Valley, north of Qomolangma (Mount Everest) in southern Tibet, demonstrate that at least one segment of the detachment system was active between 19 and 22 million years ago, an interval characterized by large-scale crustal thickening at lower structural levels. These data suggest that decoupling between an extending upper crust and a converging lower crust was an important aspect of Himalayan tectonics in Miocene time.

2.
Science ; 250(4987): 1552-6, 1990 Dec 14.
Article in English | MEDLINE | ID: mdl-17818283

ABSTRACT

The Kangmar metamorphic-igneous complex is one of the most accessible examples of an enigmatic group of gneiss domes (the North Himalayan belt) that lies midway between the Greater Himalaya and the Indus-Tsangpo suture in southern Tibet. Structural analysis suggests that the domal structure formed as a consequence of extensional deformation, much like the Tertiary metamorphic core complexes in the North American Cordillera. Unlike its North American counterparts, the Kangmar dome developed in an entirely convergent tectonic setting. The documentation of metamorphic core complexes in the Himalayan orogen supports the emerging concept that extensional processes may play an important role in the evolution of compressional mountain belts.

SELECTION OF CITATIONS
SEARCH DETAIL
...