Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 14(7)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35406536

ABSTRACT

Current treatments for osteosarcoma, combining conventional polychemotherapy and surgery, make it possible to attain a five-year survival rate of 70% in affected individuals. The presence of chemoresistance and metastases significantly shorten the patient's lifespan, making identification of new therapeutic tools essential. Inhibiting bone resorption has been shown to be an efficient adjuvant strategy impacting the metastatic dissemination of osteosarcoma, tumor growth, and associated bone destruction. Unfortunately, over-apposition of mineralized matrix by normal and tumoral osteoblasts was associated with this inhibition. Endothelin signaling is implicated in the functional differentiation of osteoblasts, raising the question of the potential value of inhibiting it alone, or in combination with bone resorption repression. Using mouse models of osteosarcoma, the impact of macitentan, an endothelin receptor inhibitor, was evaluated regarding tumor growth, metastatic dissemination, matrix over-apposition secondary to RANKL blockade, and safety when combined with chemotherapy. The results showed that macitentan has no impact on tumor growth or sensitivity to ifosfamide, but significantly reduces tumoral osteoid tissue formation and the metastatic capacity of the osteosarcoma. To conclude, macitentan appears to be a promising therapeutic adjuvant for osteosarcoma alone or associated with bone resorption inhibitors.

2.
J Clin Med ; 9(4)2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32218136

ABSTRACT

The primary retention of molars observed in clinic corresponds to a still-unexplained absence of molar eruption despite the presence of an eruption pathway, resembling the experimental transient inhibition of RANKL signaling in mice. The aim of the present study was to confront the hypothesis according to which the primary retention of molars is associated with transitory perturbations to RANKL signaling during growth as part of a wider craniofacial skeleton pattern. The experimental strategy was based on combining a clinical study and an animal study corresponding to the characterization of the craniofacial phenotypes of patients with primary retention of molars and analyses in mice of the consequences of transient inhibition of RANKL signaling on molar eruption and craniofacial growth. The clinical study validated the existence of a particular craniofacial phenotype in patients with primary retention of molars: a retromandibular skeletal class II typology with reduced mandibular dimensions which manifests itself at the dental level by a class II/2 with palatoversion of the upper incisors and anterior overbite. The animal study demonstrated that transient invalidation of RANKL signaling had an impact on the molar eruption process, the severity of which was dependent on the period of inhibition and was associated with a reduction in two craniofacial morphometric parameters: total skull length and craniofacial vault length. In conclusion, primary retention of molars may be proposed as part of the craniofacial skeleton phenotype associated with a transitory alteration in RANKL signaling during growth.

3.
Int J Mol Sci ; 20(15)2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31370265

ABSTRACT

Osteosarcoma and Ewing sarcoma are the most common malignant primary bone tumors mainly occurring in children, adolescents and young adults. Current standard therapy includes multidrug chemotherapy and/or radiation specifically for Ewing sarcoma, associated with tumor resection. However, patient survival has not evolved for the past decade and remains closely related to the response of tumor cells to chemotherapy, reaching around 75% at 5 years for patients with localized forms of osteosarcoma or Ewing sarcoma but less than 30% in metastatic diseases and patients resistant to initial chemotherapy. Despite Ewing sarcoma being characterized by specific EWSR1-ETS gene fusions resulting in oncogenic transcription factors, currently, no targeted therapy could be implemented. It seems even more difficult to develop a targeted therapeutic strategy in osteosarcoma which is characterized by high complexity and heterogeneity in genomic alterations. Nevertheless, the common point between these different bone tumors is their ability to deregulate bone homeostasis and remodeling and divert them to their benefit. Therefore, targeting different actors of the bone tumor microenvironment has been hypothesized to develop new therapeutic strategies. In this context, it is well known that the Wnt/ß-catenin signaling pathway plays a key role in cancer development, including osteosarcoma and Ewing sarcoma as well as in bone remodeling. Moreover, recent studies highlight the implication of the Wnt/ß-catenin pathway in angiogenesis and immuno-surveillance, two key mechanisms involved in metastatic dissemination. This review focuses on the role played by this signaling pathway in the development of primary bone tumors and the modulation of their specific microenvironment.


Subject(s)
Antineoplastic Agents/therapeutic use , Bone Neoplasms/drug therapy , Gene Expression Regulation, Neoplastic , Osteosarcoma/drug therapy , Sarcoma, Ewing/drug therapy , Tumor Microenvironment/drug effects , Adolescent , Bone Neoplasms/genetics , Bone Neoplasms/immunology , Bone Neoplasms/mortality , Bone and Bones , Child , Humans , Lymphatic Metastasis , Molecular Targeted Therapy/methods , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/immunology , Neovascularization, Pathologic/mortality , Neovascularization, Pathologic/prevention & control , Oncogene Proteins, Fusion/antagonists & inhibitors , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/immunology , Osteosarcoma/genetics , Osteosarcoma/immunology , Osteosarcoma/mortality , Proto-Oncogene Proteins c-ets/antagonists & inhibitors , Proto-Oncogene Proteins c-ets/genetics , Proto-Oncogene Proteins c-ets/immunology , RNA-Binding Protein EWS/antagonists & inhibitors , RNA-Binding Protein EWS/genetics , RNA-Binding Protein EWS/immunology , Sarcoma, Ewing/genetics , Sarcoma, Ewing/immunology , Sarcoma, Ewing/mortality , Survival Analysis , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Wnt Signaling Pathway/drug effects , Young Adult , beta Catenin/antagonists & inhibitors , beta Catenin/genetics , beta Catenin/immunology
4.
Clin Cancer Res ; 22(10): 2520-33, 2016 05 15.
Article in English | MEDLINE | ID: mdl-26712686

ABSTRACT

PURPOSE: Despite recent improvements in therapeutic management of osteosarcoma, ongoing challenges in improving the response to chemotherapy warrants the development of new strategies to improve overall patient survival. Among them, HSP90 is a molecular chaperone involved in the maturation and stability of various oncogenic proteins leading to tumor cells survival and disease progression. We assessed the antitumor properties of a synthetic HSP90 inhibitor, PF4942847, alone or in combination with zoledronic acid in osteosarcoma. EXPERIMENTAL DESIGN: The effects of PF4942847 were evaluated on human osteosarcoma cells growth and apoptosis. Signaling pathways were analyzed by Western blotting. The consequence of HSP90 therapy combined or not with zoledronic acid was evaluated in mice bearing HOS-MNNG xenografts on tumor growth, associated bone lesions, and pulmonary metastasis. The effect of PF4942847 on osteoclastogenesis was assessed on human CD14(+) monocytes. RESULTS: In osteosarcoma cell lines, PF4942847 inhibited cell growth in a dose-dependent manner (IC50 ±50 nmol/L) and induced apoptosis with an increase of sub-G1 fraction and cleaved PARP. These biologic events were accompanied by decreased expression of Akt, p-ERK, c-Met, and c-RAF1. When administered orally to mice bearing osteosarcoma tumors, PF4942847 significantly inhibited tumor growth by 80%, prolonged survival compared with controls, and inhibited pulmonary metastases by blocking c-Met, FAK, and MMP9 signaling. In contrast to 17-allylamino-17-demethoxygeldanamycin (17-AAG), PF4942847 did not induce osteoclast differentiation, and synergistically acted with zoledronic acid to delay osteosarcoma progression and prevent bone lesions. CONCLUSIONS: All these data provide a strong rationale for clinical evaluation of PF4942847 alone or in combination with zoledronic acid in osteosarcoma. Clin Cancer Res; 22(10); 2520-33. ©2015 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Diphosphonates/pharmacology , HSP90 Heat-Shock Proteins/metabolism , Imidazoles/pharmacology , Neoplasm Metastasis/drug therapy , Osteosarcoma/drug therapy , Animals , Apoptosis/drug effects , Cell Line, Tumor , Disease Progression , Drug Synergism , Female , Humans , Mice , Mice, Nude , Monocytes/drug effects , Monocytes/metabolism , Osteosarcoma/metabolism , Signal Transduction/drug effects , Xenograft Model Antitumor Assays/methods , Zoledronic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...