Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(1): e0228253, 2020.
Article in English | MEDLINE | ID: mdl-31978204

ABSTRACT

Diel vertical migration is a widespread behavioral phenomenon where organisms migrate through the water column and may modify behavior relative to changing environmental conditions based on physiological tolerances. Here, we combined a novel suite of biologging technologies to examine the thermal physiology (intramuscular temperature), fine-scale swimming behavior and activity (overall dynamic body acceleration as a proxy for energy expenditure) of bluntnose sixgill sharks (Hexanchus griseus) in response to environmental changes (depth, water temperature, dissolved oxygen) experienced during diel vertical migrations. In the subtropical waters off Hawai'i, sixgill sharks undertook pronounced diel vertical migrations and spent considerable amounts of time in cold (5-7°C), low oxygen conditions (10-25% saturation) during their deeper daytime distribution. Further, sixgill sharks spent the majority of their deeper daytime distribution with intramuscular temperatures warmer than ambient water temperatures, thereby providing them with a significant thermal advantage over non-vertically migrating and smaller-sized prey. Sixgill sharks exhibited relatively high rates of activity during both shallow (night) and deep (day) phases and contrary to our predictions, did not reduce activity levels during their deeper daytime distribution while experiencing low temperature and dissolved oxygen levels. This demonstrates an ability to tolerate the low oxygen conditions occurring within the local oxygen minimum zone. The novel combination of biologging technologies used here enabled innovative in situ deep-sea natural experiments and provided significant insight into the behavioral and physiological ecology of an ecologically important deepwater species.


Subject(s)
Behavior, Animal , Sharks/physiology , Accelerometry , Animals , Cold Temperature , Energy Metabolism , Female , Male , Oxygen/chemistry , Photoperiod , Swimming
2.
Sci Rep ; 8(1): 4945, 2018 03 21.
Article in English | MEDLINE | ID: mdl-29563552

ABSTRACT

We compared tiger shark (Galeocerdo cuvier) spatial behaviour among 4 Hawaiian Islands to evaluate whether local patterns of movement could explain higher numbers of shark bites seen around Maui than other islands. Our sample consisted of 96 electronically-tagged (satellite and acoustic transmitters) tiger sharks, individually tracked for up to 6 years. Most individuals showed fidelity to a specific 'home' island, but also swam between islands and sometimes ranged far (up to 1,400 km) offshore. Movements were primarily oriented to insular shelf habitat (0-200 m depth) in coastal waters, and individual sharks utilized core-structured home ranges within this habitat. Core utilization areas of large tiger sharks were closer to high-use ocean recreation sites around Maui, than around Oahu. Tiger sharks routinely visited shallow ocean recreation sites around Maui and were detected on more days overall at ocean recreation sites around Maui (62-80%) than Oahu (<6%). Overall, our results suggest the extensive insular shelf surrounding Maui supports a fairly resident population of tiger sharks and also attracts visiting tiger sharks from elsewhere in Hawaii. Collectively these natural, habitat-driven spatial patterns may in-part explain why Maui has historically had more shark bites than other Hawaiian Islands.


Subject(s)
Animal Migration/physiology , Bites and Stings/epidemiology , Diving/statistics & numerical data , Sharks/physiology , Spatial Behavior/physiology , Animals , Coral Reefs , Female , Geographic Information Systems , Hawaii , Humans , Male , Oceans and Seas , Remote Sensing Technology/instrumentation , Risk Factors , Spatial Analysis
3.
Glob Chang Biol ; 24(5): 1884-1893, 2018 05.
Article in English | MEDLINE | ID: mdl-29516588

ABSTRACT

The redistribution of species has emerged as one of the most pervasive impacts of anthropogenic climate warming, and presents many societal challenges. Understanding how temperature regulates species distributions is particularly important for mobile marine fauna such as sharks given their seemingly rapid responses to warming, and the socio-political implications of human encounters with some dangerous species. The predictability of species distributions can potentially be improved by accounting for temperature's influence on performance, an elusive relationship for most large animals. We combined multi-decadal catch data and bio-logging to show that coastal abundance and swimming performance of tiger sharks Galeocerdo cuvier are both highest at ~22°C, suggesting thermal constraints on performance may regulate this species' distribution. Tiger sharks are responsible for a large proportion of shark bites on humans, and a focus of controversial control measures in several countries. The combination of distribution and performance data moves towards a mechanistic understanding of tiger shark's thermal niche, and delivers a simple yet powerful indicator for predicting the location and timing of their occurrences throughout coastlines. For example, tiger sharks are mostly caught at Australia's popular New South Wales beaches (i.e. near Sydney) in the warmest months, but our data suggest similar abundances will occur in winter and summer if annual sea surface temperatures increase by a further 1-2°C.


Subject(s)
Animal Distribution/physiology , Sharks/physiology , Temperature , Animals , Ecosystem , New South Wales , Oceans and Seas , Seasons
4.
PLoS One ; 9(1): e84799, 2014.
Article in English | MEDLINE | ID: mdl-24416287

ABSTRACT

Tiger sharks (Galecerdo cuvier) are apex predators characterized by their broad diet, large size and rapid growth. Tiger shark maximum size is typically between 380 & 450 cm Total Length (TL), with a few individuals reaching 550 cm TL, but the maximum size of tiger sharks in Hawaii waters remains uncertain. A previous study suggested tiger sharks grow rather slowly in Hawaii compared to other regions, but this may have been an artifact of the method used to estimate growth (unvalidated vertebral ring counts) compounded by small sample size and narrow size range. Since 1993, the University of Hawaii has conducted a research program aimed at elucidating tiger shark biology, and to date 420 tiger sharks have been tagged and 50 recaptured. All recaptures were from Hawaii except a single shark recaptured off Isla Jacques Cousteau (24°13'17″N 109°52'14″W), in the southern Gulf of California (minimum distance between tag and recapture sites  =  approximately 5,000 km), after 366 days at liberty (DAL). We used these empirical mark-recapture data to estimate growth rates and maximum size for tiger sharks in Hawaii. We found that tiger sharks in Hawaii grow twice as fast as previously thought, on average reaching 340 cm TL by age 5, and attaining a maximum size of 403 cm TL. Our model indicates the fastest growing individuals attain 400 cm TL by age 5, and the largest reach a maximum size of 444 cm TL. The largest shark captured during our study was 464 cm TL but individuals >450 cm TL were extremely rare (0.005% of sharks captured). We conclude that tiger shark growth rates and maximum sizes in Hawaii are generally consistent with those in other regions, and hypothesize that a broad diet may help them to achieve this rapid growth by maximizing prey consumption rates.


Subject(s)
Body Size , Sharks/growth & development , Animals , Female , Hawaii , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...