Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
PLoS Genet ; 19(4): e1010725, 2023 04.
Article in English | MEDLINE | ID: mdl-37104544

ABSTRACT

The necrotrophic plant pathogenic bacterium Dickeya solani emerged in the potato agrosystem in Europe. All isolated strains of D. solani contain several large polyketide synthase/non-ribosomal peptide synthetase (PKS/NRPS) gene clusters. Analogy with genes described in other bacteria suggests that the clusters ooc and zms are involved in the production of secondary metabolites of the oocydin and zeamine families, respectively. A third cluster named sol was recently shown to produce an antifungal molecule. In this study, we constructed mutants impaired in each of the three secondary metabolite clusters sol, ooc, and zms to compare first the phenotype of the D. solani wild-type strain D s0432-1 with its associated mutants. We demonstrated the antimicrobial functions of these three PKS/NRPS clusters against bacteria, yeasts or fungi. The cluster sol, conserved in several other Dickeya species, produces a secondary metabolite inhibiting yeasts. Phenotyping and comparative genomics of different D. solani wild-type isolates revealed that the small regulatory RNA ArcZ plays a major role in the control of the clusters sol and zms. A single-point mutation, conserved in some Dickeya wild-type strains, including the D. solani type strain IPO 2222, impairs the ArcZ function by affecting its processing into an active form.


Subject(s)
Antimicrobial Peptides , Multigene Family , Point Mutation , Multigene Family/genetics , Genomics , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , Polyketide Synthases/genetics , Antimicrobial Peptides/genetics , Antimicrobial Peptides/pharmacology , Bacteria/drug effects , Ascomycota/drug effects , Dickeya/genetics , Dickeya/metabolism , Gene Expression Regulation, Bacterial/genetics
2.
Environ Microbiol ; 24(3): 1467-1483, 2022 03.
Article in English | MEDLINE | ID: mdl-35014170

ABSTRACT

The Vfm quorum sensing (QS) system is preponderant for the virulence of different species of the bacterial genus Dickeya. The vfm gene cluster encodes 26 genes involved in the production, sensing or transduction of the QS signal. To date, the Vfm QS signal has escaped detection by analytical chemistry methods. However, we report here a strain-specific polymorphism in the biosynthesis genes vfmO and vfmP, which is predicted to be related to the production of different analogues of the QS signal. Consequently, the Vfm communication could be impossible between strains possessing different variants of the genes vfmO/P. We constructed three Vfm QS biosensor strains possessing different vfmO/P variants and compared these biosensors for their responses to samples prepared from 34 Dickeya strains possessing different vfmO/P variants. A pattern of specificity was demonstrated, providing evidence that the polymorphism in the genes vfmO/P determines the biosynthesis of different analogues of the QS signal. Unexpectedly, this vfmO/P-dependent pattern of specificity is linked to a polymorphism in the ABC transporter gene vfmG, suggesting an adaptation of the putative permease VfmG to specifically bind different analogues of the QS signal. Accordingly, we discuss the possible involvement of VfmG as co-sensor of the Vfm two-component regulatory system.


Subject(s)
Bacterial Proteins , Quorum Sensing , Bacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Dickeya , Gene Expression Regulation, Bacterial , Polymorphism, Genetic , Quorum Sensing/genetics
3.
Chemistry ; 23(61): 15316-15321, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-28876492

ABSTRACT

Natural products represent an important source of potential novel antimicrobial drug leads. Low production by microorganisms in cell culture often delays the structural elucidation or even prevents a timely discovery. Starting from the anti-Gram-negative antibacterial compound albicidin produced by Xanthomonas albilineans, we describe a bioactivity-guided approach combined with non-targeted tandem mass spectrometry and spectral (molecular) networking for the discovery of novel antimicrobial compounds. We report eight new natural albicidin derivatives, four of which bear a ß-methoxy cyanoalanine or ß-methoxy asparagine as the central α-amino acid. We present the total synthesis of these albicidins, which facilitated the unambiguous determination of the (2 S,3 R)-stereoconfiguration which is complemented by the assessment of the stereochemistry on antibacterial activity.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Biological Products/chemical synthesis , Biological Products/chemistry , Chromatography, High Pressure Liquid , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Microbial Sensitivity Tests , Organic Chemicals/chemical synthesis , Organic Chemicals/chemistry , Stereoisomerism , Structure-Activity Relationship , Tandem Mass Spectrometry , Xanthomonas/chemistry , Xanthomonas/metabolism
4.
Annu Rev Phytopathol ; 54: 163-87, 2016 08 04.
Article in English | MEDLINE | ID: mdl-27296145

ABSTRACT

How pathogens coevolve with and adapt to their hosts are critical to understanding how host jumps and/or acquisition of novel traits can lead to new disease emergences. The Xanthomonas genus includes Gram-negative plant-pathogenic bacteria that collectively infect a broad range of crops and wild plant species. However, individual Xanthomonas strains usually cause disease on only a few plant species and are highly adapted to their hosts, making them pertinent models to study host specificity. This review summarizes our current understanding of the molecular basis of host specificity in the Xanthomonas genus, with a particular focus on the ecology, physiology, and pathogenicity of the bacterium. Despite our limited understanding of the basis of host specificity, type III effectors, microbe-associated molecular patterns, lipopolysaccharides, transcriptional regulators, and chemotactic sensors emerge as key determinants for shaping host specificity.


Subject(s)
Genome, Bacterial , Host Specificity , Plant Diseases/microbiology , Xanthomonas/physiology , Xanthomonas/genetics
5.
ACS Chem Biol ; 11(5): 1198-204, 2016 05 20.
Article in English | MEDLINE | ID: mdl-26886160

ABSTRACT

Albicidin is a potent antibiotic and phytotoxin produced by Xanthomonas albilineans which targets the plant and bacterial DNA gyrase. We now report on a new albicidin derivative which is carbamoylated at the N-terminal coumaric acid by the action of the ATP-dependent O-carbamoyltransferase Alb15, present in the albicidin (alb) gene cluster. Carbamoyl-albicidin was characterized by tandem mass spectrometry from cultures of a Xanthomonas overproducer strain and the gene function confirmed by gene inactivation of alb15 in X. albilineans. Expression of alb15 in Escherichia coli and in vitro reconstitution of the carbamoyltransferase activity confirmed albicidin as the substrate. The chemical synthesis of carbamoyl-albicidin finally enabled us to assess its bioactivity by means of in vitro gyrase inhibition and antibacterial assays. Compared to albicidin, carbamoyl-albicidin showed a significantly higher inhibitory efficiency against bacterial gyrase (∼8 vs 49 nM), which identifies the carbamoyl group as an important structural feature of albicidin maturation.


Subject(s)
Bacterial Proteins/metabolism , Carboxyl and Carbamoyl Transferases/metabolism , Xanthomonas/enzymology , Bacterial Proteins/genetics , Carboxyl and Carbamoyl Transferases/genetics , Genes, Bacterial , Multigene Family , Organic Chemicals/chemistry , Organic Chemicals/metabolism , Substrate Specificity , Xanthomonas/chemistry , Xanthomonas/genetics , Xanthomonas/metabolism
6.
Genes (Basel) ; 6(3): 714-33, 2015 Jul 23.
Article in English | MEDLINE | ID: mdl-26213974

ABSTRACT

Xanthomonas albilineans is the bacterium responsible for leaf scald, a lethal disease of sugarcane. Within the Xanthomonas genus, X. albilineans exhibits distinctive genomic characteristics including the presence of significant genome erosion, a non-ribosomal peptide synthesis (NRPS) locus involved in albicidin biosynthesis, and a type 3 secretion system (T3SS) of the Salmonella pathogenicity island-1 (SPI-1) family. We sequenced two X. albilineans-like strains isolated from unusual environments, i.e., from dew droplets on sugarcane leaves and from the wild grass Paspalum dilatatum, and compared these genomes sequences with those of two strains of X. albilineans and three of Xanthomonas sacchari. Average nucleotide identity (ANI) and multi-locus sequence analysis (MLSA) showed that both X. albilineans-like strains belong to a new species close to X. albilineans that we have named "Xanthomonas pseudalbilineans". X. albilineans and "X. pseudalbilineans" share many genomic features including (i) the lack of genes encoding a hypersensitive response and pathogenicity type 3 secretion system (Hrp-T3SS), and (ii) genome erosion that probably occurred in a common progenitor of both species. Our comparative analyses also revealed specific genomic features that may help X. albilineans interact with sugarcane, e.g., a PglA endoglucanase, three TonB-dependent transporters and a glycogen metabolism gene cluster. Other specific genomic features found in the "X. pseudalbilineans" genome may contribute to its fitness and specific ecological niche.

7.
J Am Chem Soc ; 137(24): 7608-11, 2015 Jun 24.
Article in English | MEDLINE | ID: mdl-26057615

ABSTRACT

The para-aminobenzoic acid-containing peptide albicidin is a pathogenicity factor synthesized by Xanthomonas albilineans in infections of sugar cane. Albicidin is a nanomolar inhibitor of the bacterial DNA gyrase with a strong activity against various Gram-negative bacteria. The bacterium Pantoea dispersa expresses the hydrolase AlbD, conferring natural resistance against albicidin. We show that AlbD is a novel type of endopeptidase that catalyzes the cleavage of albicidin at a peptide backbone amide bond, thus abolishing its antimicrobial activity. Additionally, we determined the minimal cleavage motif of AlbD with substrates derived by chemical synthesis. Our results clearly identify AlbD as a unique endopeptidase that is the first member of a new subfamily of peptidases. Our findings provide the molecular basis for a natural detoxification mechanism, potentially rendering a new tool in biological chemistry approaches.


Subject(s)
Anti-Bacterial Agents/metabolism , Pantoea/enzymology , Serine Endopeptidases/metabolism , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae Infections/microbiology , Humans , Hydrolysis , Organic Chemicals/metabolism , Organic Chemicals/pharmacology , Pantoea/drug effects , Xanthomonas/metabolism
8.
Front Plant Sci ; 6: 289, 2015.
Article in English | MEDLINE | ID: mdl-25964795

ABSTRACT

Xanthomonas albilineans causes leaf scald, a lethal disease of sugarcane. Compared to other species of Xanthomonas, X. albilineans exhibits distinctive pathogenic mechanisms, ecology and taxonomy. Its genome, which has experienced significant erosion, has unique genomic features. It lacks two loci required for pathogenicity in other plant pathogenic species of Xanthomonas: the xanthan gum biosynthesis and the Hrp-T3SS (hypersensitive response and pathogenicity-type three secretion system) gene clusters. Instead, X. albilineans harbors in its genome an SPI-1 (Salmonella pathogenicity island-1) T3SS gene cluster usually found in animal pathogens. X. albilineans produces a potent DNA gyrase inhibitor called albicidin, which blocks chloroplast differentiation, resulting in the characteristic white foliar stripe symptoms. The antibacterial activity of albicidin also confers on X. albilineans a competitive advantage against rival bacteria during sugarcane colonization. Recent chemical studies have uncovered the unique structure of albicidin and allowed us to partially elucidate its fascinating biosynthesis apparatus, which involves an enigmatic hybrid PKS/NRPS (polyketide synthase/non-ribosomal peptide synthetase) machinery.

9.
Genome Announc ; 3(2)2015 Mar 19.
Article in English | MEDLINE | ID: mdl-25792064

ABSTRACT

We report the high-quality draft genome sequence of Xanthomonas sacchari strain LMG 476, isolated from sugarcane. The genome comparison of this strain with a previously sequenced X. sacchari strain isolated from a distinct environmental source should provide further insights into the adaptation of this species to different habitats and its evolution.

10.
Nat Chem Biol ; 11(3): 195-7, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25599532

ABSTRACT

Albicidin is a potent DNA gyrase inhibitor produced by the sugarcane pathogenic bacterium Xanthomonas albilineans. Here we report the elucidation of the hitherto unknown structure of albicidin, revealing a unique polyaromatic oligopeptide mainly composed of p-aminobenzoic acids. In vitro studies provide further insights into the biosynthetic machinery of albicidin. These findings will enable structural investigations on the inhibition mechanism of albicidin and its assessment as a highly effective antibacterial drug.


Subject(s)
4-Aminobenzoic Acid/chemistry , Alanine/analogs & derivatives , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/pharmacology , Alanine/chemistry , Anti-Bacterial Agents/chemical synthesis , Bacteria/drug effects , Fermentation , Microbial Sensitivity Tests , Oligopeptides/chemistry , Organic Chemicals/chemical synthesis , Organic Chemicals/chemistry , Organic Chemicals/pharmacology , Structure-Activity Relationship , Xanthomonas/chemistry
11.
Angew Chem Int Ed Engl ; 54(6): 1969-73, 2015 Feb 02.
Article in English | MEDLINE | ID: mdl-25504839

ABSTRACT

The peptide antibiotic albicidin, which is synthesized by the plant pathogenic bacterium Xanthomonas albilineans, displays remarkable antibacterial activity against various Gram-positive and Gram-negative microorganisms. The low amounts of albicidin obtainable from the producing organism or through heterologous expression are limiting factors in providing sufficient material for bioactivity profiling and structure-activity studies. Therefore, we developed a convergent total synthesis route toward albicidin. The unexpectedly difficult formation of amide bonds between the aromatic amino acids was achieved through a triphosgene-mediated coupling strategy. The herein presented synthesis of albicidin confirms the previously determined chemical structure and underlines the extraordinary antibacterial activity of this compound. The synthetic protocol will provide multigram amounts of albicidin for further profiling of its drug properties.


Subject(s)
Anti-Bacterial Agents/pharmacology , DNA Gyrase/drug effects , Enzyme Inhibitors/pharmacology , Xanthomonas/chemistry , Anti-Bacterial Agents/chemistry , Enzyme Inhibitors/chemistry , Molecular Structure , Organic Chemicals/chemistry , Organic Chemicals/pharmacology
12.
BMC Genomics ; 14: 761, 2013 Nov 06.
Article in English | MEDLINE | ID: mdl-24195767

ABSTRACT

BACKGROUND: Xanthomonads are plant-associated bacteria responsible for diseases on economically important crops. Xanthomonas fuscans subsp. fuscans (Xff) is one of the causal agents of common bacterial blight of bean. In this study, the complete genome sequence of strain Xff 4834-R was determined and compared to other Xanthomonas genome sequences. RESULTS: Comparative genomics analyses revealed core characteristics shared between Xff 4834-R and other xanthomonads including chemotaxis elements, two-component systems, TonB-dependent transporters, secretion systems (from T1SS to T6SS) and multiple effectors. For instance a repertoire of 29 Type 3 Effectors (T3Es) with two Transcription Activator-Like Effectors was predicted. Mobile elements were associated with major modifications in the genome structure and gene content in comparison to other Xanthomonas genomes. Notably, a deletion of 33 kbp affects flagellum biosynthesis in Xff 4834-R. The presence of a complete flagellar cluster was assessed in a collection of more than 300 strains representing different species and pathovars of Xanthomonas. Five percent of the tested strains presented a deletion in the flagellar cluster and were non-motile. Moreover, half of the Xff strains isolated from the same epidemic than 4834-R was non-motile and this ratio was conserved in the strains colonizing the next bean seed generations. CONCLUSIONS: This work describes the first genome of a Xanthomonas strain pathogenic on bean and reports the existence of non-motile xanthomonads belonging to different species and pathovars. Isolation of such Xff variants from a natural epidemic may suggest that flagellar motility is not a key function for in planta fitness.


Subject(s)
Flagella/genetics , Genetic Fitness , Plant Diseases/microbiology , Xanthomonas/genetics , Base Sequence , Evolution, Molecular , Fabaceae/genetics , Fabaceae/growth & development , Fabaceae/microbiology , Flagella/physiology , Genome, Bacterial , Phylogeny , Plant Diseases/genetics , Seeds/genetics , Seeds/microbiology , Sequence Analysis, DNA , Xanthomonas/classification , Xanthomonas/pathogenicity
13.
BMC Genomics ; 14: 658, 2013 Sep 27.
Article in English | MEDLINE | ID: mdl-24069909

ABSTRACT

BACKGROUND: Various bacteria can use non-ribosomal peptide synthesis (NRPS) to produce peptides or other small molecules. Conserved features within the NRPS machinery allow the type, and sometimes even the structure, of the synthesized polypeptide to be predicted. Thus, bacterial genome mining via in silico analyses of NRPS genes offers an attractive opportunity to uncover new bioactive non-ribosomally synthesized peptides. Xanthomonas is a large genus of Gram-negative bacteria that cause disease in hundreds of plant species. To date, the only known small molecule synthesized by NRPS in this genus is albicidin produced by Xanthomonas albilineans. This study aims to estimate the biosynthetic potential of Xanthomonas spp. by in silico analyses of NRPS genes with unknown function recently identified in the sequenced genomes of X. albilineans and related species of Xanthomonas. RESULTS: We performed in silico analyses of NRPS genes present in all published genome sequences of Xanthomonas spp., as well as in unpublished draft genome sequences of Xanthomonas oryzae pv. oryzae strain BAI3 and Xanthomonas spp. strain XaS3. These two latter strains, together with X. albilineans strain GPE PC73 and X. oryzae pv. oryzae strains X8-1A and X11-5A, possess novel NRPS gene clusters and share related NRPS-associated genes such as those required for the biosynthesis of non-proteinogenic amino acids or the secretion of peptides. In silico prediction of peptide structures according to NRPS architecture suggests eight different peptides, each specific to its producing strain. Interestingly, these eight peptides cannot be assigned to any known gene cluster or related to known compounds from natural product databases. PCR screening of a collection of 94 plant pathogenic bacteria indicates that these novel NRPS gene clusters are specific to the genus Xanthomonas and are also present in Xanthomonas translucens and X. oryzae pv. oryzicola. Further genome mining revealed other novel NRPS genes specific to X. oryzae pv. oryzicola or Xanthomonas sacchari. CONCLUSIONS: This study revealed the significant potential of the genus Xanthomonas to produce new non-ribosomally synthesized peptides. Interestingly, this biosynthetic potential seems to be specific to strains of Xanthomonas associated with monocotyledonous plants, suggesting a putative involvement of non-ribosomally synthesized peptides in plant-bacteria interactions.


Subject(s)
Computational Biology/methods , Genome, Bacterial/genetics , Peptide Biosynthesis, Nucleic Acid-Independent/genetics , Peptides/metabolism , Xanthomonas/genetics , Amino Acid Sequence , Computer Simulation , Fatty Acids/biosynthesis , Genes, Bacterial , Genetic Loci/genetics , Multigene Family , Physical Chromosome Mapping , Plants/microbiology , Polymerase Chain Reaction , Sequence Homology, Amino Acid , Xanthomonas/enzymology
14.
Maturitas ; 75(1): 94-100, 2013 May.
Article in English | MEDLINE | ID: mdl-23528735

ABSTRACT

BACKGROUND: Muscle and joint aches (MJA) are frequently observed among menopausal women. They impair quality of life and are a burden to the healthcare system. OBJECTIVE: To analyze the relation between MJA and several variables related to the menopause. METHODS: In this cross-sectional study, 8373 healthy women aged 40-59 years, accompanying patients to healthcare centers in 18 cities of 12 Latin American countries, were asked to fill out the Menopause Rating Scale (MRS) and a questionnaire containing personal data. RESULTS: Mean age of the whole sample was 49.1±5.7 years, 48.6% were postmenopausal and 14.7% used hormone therapy (HT). A 63.0% of them presented MJA, with a 15.6% being scored as severe to very severe according to the MRS (scores 3 or 4). Logistic regression model determined that vasomotor symptoms (OR: 6.16; 95% CI, 5.25-7.24), premature menopause (OR: 1.58; 95% CI, 1.02-2.45), postmenopausal status (OR: 1.43; 95% CI, 1.20-1.69), psychiatric consultation (OR: 1.93; 95% CI, 1.60-2.32) and the use of psychotropic drugs (OR: 1.35; 95% CI, 1.08-1.69) were significantly related to the presence of severe-very severe MJA. Other significant variables included: age, tobacco consumption and lower education. Self perception of healthiness (OR: 0.49; 95% CI, 0.41-0.59), private healthcare access (OR: 0.77; 95% CI, 0.67-0.88) and HT use (OR: 0.75; 95% CI, 0.62-0.91) were significantly related to a lower risk for the presence of severe-very severe MJA. CONCLUSION: In this large mid-aged sample the prevalence of MJA was high, which was significantly associated to menopausal variables, especially vasomotor symptoms. This association may suggest a potential role of mid-life female hormonal changes in the pathogenesis of MJA.


Subject(s)
Arthralgia/epidemiology , Menopause/physiology , Muscular Diseases/epidemiology , Adult , Arthralgia/etiology , Cross-Sectional Studies , Female , Humans , Latin America/epidemiology , Middle Aged , Muscular Diseases/etiology , Vasomotor System/physiology
15.
BMC Genomics ; 13: 658, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23171051

ABSTRACT

BACKGROUND: Xanthomonas albilineans causes leaf scald, a lethal disease of sugarcane. X. albilineans exhibits distinctive pathogenic mechanisms, ecology and taxonomy compared to other species of Xanthomonas. For example, this species produces a potent DNA gyrase inhibitor called albicidin that is largely responsible for inducing disease symptoms; its habitat is limited to xylem; and the species exhibits large variability. A first manuscript on the complete genome sequence of the highly pathogenic X. albilineans strain GPE PC73 focused exclusively on distinctive genomic features shared with Xylella fastidiosa-another xylem-limited Xanthomonadaceae. The present manuscript on the same genome sequence aims to describe all other pathogenicity-related genomic features of X. albilineans, and to compare, using suppression subtractive hybridization (SSH), genomic features of two strains differing in pathogenicity. RESULTS: Comparative genomic analyses showed that most of the known pathogenicity factors from other Xanthomonas species are conserved in X. albilineans, with the notable absence of two major determinants of the "artillery" of other plant pathogenic species of Xanthomonas: the xanthan gum biosynthesis gene cluster, and the type III secretion system Hrp (hypersensitive response and pathogenicity). Genomic features specific to X. albilineans that may contribute to specific adaptation of this pathogen to sugarcane xylem vessels were also revealed. SSH experiments led to the identification of 20 genes common to three highly pathogenic strains but missing in a less pathogenic strain. These 20 genes, which include four ABC transporter genes, a methyl-accepting chemotaxis protein gene and an oxidoreductase gene, could play a key role in pathogenicity. With the exception of hypothetical proteins revealed by our comparative genomic analyses and SSH experiments, no genes potentially involved in any offensive or counter-defensive mechanism specific to X. albilineans were identified, supposing that X. albilineans has a reduced artillery compared to other pathogenic Xanthomonas species. Particular attention has therefore been given to genomic features specific to X. albilineans making it more capable of evading sugarcane surveillance systems or resisting sugarcane defense systems. CONCLUSIONS: This study confirms that X. albilineans is a highly distinctive species within the genus Xanthomonas, and opens new perpectives towards a greater understanding of the pathogenicity of this destructive sugarcane pathogen.


Subject(s)
Genome, Bacterial/genetics , Saccharum/microbiology , Virulence Factors/genetics , Xanthomonas/pathogenicity , Xylem/microbiology , ATP-Binding Cassette Transporters/genetics , Adhesins, Bacterial/genetics , Base Sequence , Chromosome Mapping , Cluster Analysis , Genes, Bacterial/genetics , Immunoblotting , Inverted Repeat Sequences/genetics , Models, Genetic , Molecular Sequence Data , Nucleic Acid Amplification Techniques/methods , Phylogeny , Quorum Sensing/genetics , Sequence Analysis, DNA , Signal Transduction/genetics , Species Specificity , Xanthomonas/genetics
16.
Menopause ; 19(4): 433-7, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22067278

ABSTRACT

OBJECTIVE: The aim of this study was to determine an optimal waist circumference (WC) cutoff value for defining the metabolic syndrome (METS) in postmenopausal Latin American women. METHODS: A total of 3,965 postmenopausal women (age, 45-64 y), with self-reported good health, attending routine consultation at 12 gynecological centers in major Latin American cities were included in this cross-sectional study. Modified guidelines of the US National Cholesterol Education Program, Adult Treatment Panel III were used to assess METS risk factors. Receiver operator characteristic curve analysis was used to obtain an optimal WC cutoff value best predicting at least two other METS components. Optimal cutoff values were calculated by plotting the true-positive rate (sensitivity) against the false-positive rate (1 - specificity). In addition, total accuracy, distance to receiver operator characteristic curve, and the Youden Index were calculated. RESULTS: Of the participants, 51.6% (n = 2,047) were identified as having two or more nonadipose METS risk components (excluding a positive WC component). These women were older, had more years since menopause onset, used hormone therapy less frequently, and had higher body mass indices than women with fewer metabolic risk factors. The optimal WC cutoff value best predicting at least two other METS components was determined to be 88 cm, equal to that defined by the Adult Treatment Panel III. CONCLUSIONS: A WC cutoff value of 88 cm is optimal for defining METS in this postmenopausal Latin American series.


Subject(s)
Metabolic Syndrome/diagnosis , Metabolic Syndrome/epidemiology , Postmenopause , Waist Circumference , Women's Health , Age Distribution , Anthropometry , Body Height , Body Mass Index , Comorbidity , Female , Humans , Latin America/epidemiology , Middle Aged , Obesity/epidemiology , Prevalence , Reference Values , Risk Factors
17.
Menopause ; 18(7): 778-85, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21407137

ABSTRACT

OBJECTIVE: The aim of this study was to determine vasomotor symptom (VMS) prevalence, duration, and impact on quality of life in middle-aged women using a validated menopausal tool. METHODS: The Menopause Rating Scale (MRS) and an itemized questionnaire containing personal sociodemographic data were used to examine 8,373 women aged 40 to 59 years from 22 healthcare centers in 12 Latin American countries. RESULTS: Less than half (48.8%) of all women studied were postmenopausal, 14.7% used hormone therapy (HT), 54.5% presented VMS of any degree, and 9.6% presented severe/bothersome symptoms. The rate of VMS (any degree) significantly increased from one menopausal stage to the next. HT users presented more VMS (any degree) than did nonusers (58.6% vs 53.8%, P = 0.001). When surgical postmenopausal women were compared, non-HT users displayed a higher prevalence of severe VMS (16.1% vs 9.0%, P = 0.0001). The presence of VMS of any degree was related to a more impaired quality of life (higher total MRS score; odds ratio, 4.7; 95% CI, 4.1-5.3). This effect was even higher among women presenting severe VMS. Logistic regression analysis determined that the presence of severe psychological/urogenital symptoms (MRS), lower educational level, natural perimenopause-postmenopause status, nulliparity, surgical menopause, and living at high altitude were significant risk factors for severe VMS. HT use was related to a lower risk. A second regression model determined that surgical menopause, intense psychological/urogenital symptoms, and a history of psychiatric consultation were factors related to severe VMS persisting into the late postmenopausal stage (5 or more years). CONCLUSIONS: In this Latin American middle-aged series, VMS prevalence was high, persisting into the late postmenopausal phase in a high rate and severely impairing quality of life. HT use was related to a lower risk of severe VMS.


Subject(s)
Estrogen Replacement Therapy , Hot Flashes , Menopause , Vasomotor System/physiopathology , Adult , Cross-Sectional Studies , Female , Hot Flashes/drug therapy , Hot Flashes/epidemiology , Hot Flashes/physiopathology , Humans , Latin America/epidemiology , Middle Aged , Prevalence , Quality of Life , Risk Factors , Severity of Illness Index , Socioeconomic Factors , Surveys and Questionnaires , Time Factors , Women's Health
18.
Mol Plant Microbe Interact ; 24(2): 246-59, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20955079

ABSTRACT

Xanthomonas albilineans is the causal agent of sugarcane leaf scald. Interestingly, this bacterium, which is not known to be insect or animal associated, possesses a type III secretion system (T3SS) belonging to the injectisome family Salmonella pathogenicity island 1 (SPI-1). The T3SS SPI-1 of X. albilineans shares only low similarity with other available T3SS SPI-1 sequences. Screening of a collection of 128 plant-pathogenic bacteria revealed that this T3SS SPI-1 is present in only two species of Xanthomonas: X. albilineans and X. axonopodis pv. phaseoli. Inoculation of sugarcane with knockout mutants showed that this system is not required by X. albilineans to spread within xylem vessels and to cause disease symptoms. This result was confirmed by the absence of this T3SS SPI-1 in an X. albilineans strain isolated from diseased sugarcane. To investigate the importance of the T3SS SPI-1 during the life cycle of X. albilineans, we analyzed T3SS SPI-1 sequences from 11 strains spanning the genetic diversity of this species. No nonsense mutations or frameshifting indels were observed in any of these strains, suggesting that the T3SS SPI-1 system is maintained within the species X. albilineans. Evolutionary features of T3SS SPI-1 based on phylogenetic, recombination, and selection analyses are discussed in the context of the possible functional importance of T3SS SPI-1 in the ecology of X. albilineans.


Subject(s)
Evolution, Molecular , Genome, Bacterial , Plant Leaves/microbiology , Saccharum/microbiology , Xanthomonas/genetics , Xanthomonas/metabolism , Xylem/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Genomics , Host-Pathogen Interactions , Phylogeny
19.
Mol Plant Microbe Interact ; 24(5): 594-605, 2011 May.
Article in English | MEDLINE | ID: mdl-21190440

ABSTRACT

Xanthomonas albilineans is a xylem-invading pathogen that produces the toxin albicidin that blocks chloroplast differentiation, resulting in disease symptoms of sugarcane leaf scald. In contrast to other xanthomonads, X. albilineans does not possess a hypersensitive response and pathogenicity type III secretion system and does not produce xanthan gum. Albicidin is the only previously known pathogenicity factor in X. albilineans, yet albicidin-deficient mutant strains are still able to efficiently colonize sugarcane. To identify additional host adaptation or pathogenicity factors, sugarcane 'CP80-1743' was inoculated with 1,216 independently derived Tn5 insertions in X. albilineans XaFL07-1 from Florida. Sixty-one Tn5 mutants were affected in development of leaf symptoms or in stalk colonization. The Tn5 insertion sites of these mutants were determined and the interrupted genes were identified using the recently available genomic DNA sequence of X. albilineans GPE PC73 from Guadeloupe. Several pathogenicity-related loci that were not previously reported in Xanthomonas spp. were identified, including loci encoding hypothetical proteins, a membrane fusion protein conferring resistance to novobiocin, transport proteins, TonB-dependent outer-membrane transporters, and an OmpA family outer-membrane protein.


Subject(s)
Plant Diseases/microbiology , Saccharum/microbiology , Virulence Factors/genetics , Xanthomonas/pathogenicity , Cloning, Molecular , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Florida , Mutagenesis, Insertional , Plant Diseases/genetics , Plant Leaves/genetics , Plant Leaves/microbiology , Sequence Analysis, DNA , Virulence Factors/metabolism , Xanthomonas/genetics , Xanthomonas/metabolism , Xylem/metabolism , Xylem/microbiology
20.
BMC Genomics ; 10: 616, 2009 Dec 17.
Article in English | MEDLINE | ID: mdl-20017926

ABSTRACT

BACKGROUND: The Xanthomonadaceae family contains two xylem-limited plant pathogenic bacterial species, Xanthomonas albilineans and Xylella fastidiosa. X. fastidiosa was the first completely sequenced plant pathogen. It is insect-vectored, has a reduced genome and does not possess hrp genes which encode a Type III secretion system found in most plant pathogenic bacteria. X. fastidiosa was excluded from the Xanthomonas group based on phylogenetic analyses with rRNA sequences. RESULTS: The complete genome of X. albilineans was sequenced and annotated. X. albilineans, which is not known to be insect-vectored, also has a reduced genome and does not possess hrp genes. Phylogenetic analysis using X. albilineans genomic sequences showed that X. fastidiosa belongs to the Xanthomonas group. Order of divergence of the Xanthomonadaceae revealed that X. albilineans and X. fastidiosa experienced a convergent reductive genome evolution during their descent from the progenitor of the Xanthomonas genus. Reductive genome evolutions of the two xylem-limited Xanthomonadaceae were compared in light of their genome characteristics and those of obligate animal symbionts and pathogens. CONCLUSION: The two xylem-limited Xanthomonadaceae, during their descent from a common ancestral parent, experienced a convergent reductive genome evolution. Adaptation to the nutrient-poor xylem elements and to the cloistered environmental niche of xylem vessels probably favoured this convergent evolution. However, genome characteristics of X. albilineans differ from those of X. fastidiosa and obligate animal symbionts and pathogens, indicating that a distinctive process was responsible for the reductive genome evolution in this pathogen. The possible role in genome reduction of the unique toxin albicidin, produced by X. albilineans, is discussed.


Subject(s)
Evolution, Molecular , Genome, Bacterial/genetics , Xanthomonadaceae/genetics , Xanthomonas/genetics , Xylem/microbiology , Models, Genetic , Molecular Sequence Data , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal/genetics , Xanthomonadaceae/classification , Xanthomonas/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...