Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Mar Pollut Bull ; 196: 115585, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37778244

ABSTRACT

Abandoned, lost, or discarded fishing gear (ALDFG) is a major source of marine debris with significant ecological and economic consequences. We documented the frequency, types, sizes, and impacts of ALDFG recovered from Hawai'i and Palmyra Atoll in the Central North Pacific Ocean (CNPO) from 2009 to 2021. A total of 253 events weighing 15 metric tons were recovered, including 120 drifting fish aggregating device (dFAD) components, 61 conglomerates, fewer distinct nets, lines, buoys, and unique gear. The Hawaiian Islands were dominated by conglomerates and Palmyra Atoll by dFADs. DFADs were connected to the Eastern Pacific tropical tuna purse seine fishery. Windward O'ahu experienced up to seven events or 1800 kg of ALDFG per month. Across Hawai', ALDFG was present on 55 % of survey days, including hotspots with 100 % occurrence. Coral reef damage, entangled wildlife, navigational and removal costs are reported. The data highlight the large magnitude of ALDFG and associated impacts in the CNPO.


Subject(s)
Environmental Pollution , Hunting , Animals , Hawaii , Islands , Pacific Ocean , Fisheries
2.
Mar Pollut Bull ; 196: 115570, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37776741

ABSTRACT

Discarded fishing gear (DFG) comprises most of the plastic in the North Pacific Ocean and causes environmental and economic losses. Building evidence on the material construction of fishing gear types is critical to develop solutions to reduce DFG amounts and impacts. We forensically assessed the construction and chemical composition of eight different gear types removed as DFG around O'ahu, Hawai'i. A thorough dissection and novel analysis was conducted including the documentation of gear constructions, polymer identification using attenuated total reflection-Fourier transform infrared spectroscopy and differential scanning calorimetry, and elemental additive detection using X-ray fluorescence. Twenty-six different polymers were identified, and most gear consisted of polyethylene variants or blends. This inventory of physical and chemical characterization of DFG can help future polymer identification of particular gear types through visual techniques. Additionally, it can aid in identifying sources of these gear types and promote recycling options.


Subject(s)
Fisheries , Hunting , Hawaii , Pacific Ocean , Polymers
3.
Mar Pollut Bull ; 194(Pt A): 115343, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37531795

ABSTRACT

We analyzed plastic debris ingested by loggerheads from bycatch between 2007 and 2021 in the Southwest Indian Ocean (SWIO). We also analyzed plastic debris accumulated on beaches of the east coast of Madagascar as a proxy for ocean plastics to compare the characteristics of beached plastics and plastic ingested by turtles. We conducted a "brand audit" of the plastics to determine their country of origin. An oceanic circulation model was used to identify the most likely sources of plastics in the SWIO. In total, 202 of the 266 loggerheads analyzed had ingested plastics. Plastics categorized as "hard" and "white" were equally dominant in loggerheads and on beaches, suggesting no diet selectivity. Both the brand audit and circulation modeling demonstrated that Southeast Asia is the main source of plastic pollution in the region. This study demonstrates that loggerheads can be used as bioindicators of plastic pollution in the SWIO.


Subject(s)
Turtles , Water Pollutants , Animals , Plastics , Indian Ocean , Water Pollutants/analysis , Color
4.
PLoS One ; 18(5): e0284681, 2023.
Article in English | MEDLINE | ID: mdl-37224114

ABSTRACT

The resistance of plastic textiles to environmental degradation is of major concern as large portions of these materials reach the ocean. There, they persist for undefined amounts of time, possibly causing harm and toxicity to marine ecosystems. As a solution to this problem, many compostable and so-called biodegradable materials have been developed. However, to undergo rapid biodegradation, most compostable plastics require specific conditions that are achieved only in industrial settings. Thus, industrially compostable plastics might persist as pollutants under natural conditions. In this work, we tested the biodegradability in marine waters of textiles made of polylactic acid, a diffused industrially compostable plastic. The test was extended also to cellulose-based and conventional non-biodegradable oil-based plastic textiles. The analyses were complemented by bio-reactor tests for an innovative combined approach. Results show that polylactic acid, a so-called biodegradable plastic, does not degrade in the marine environment for over 428 days. This was also observed for the oil-based polypropylene and polyethylene terephthalate, including their portions in cellulose/oil-based plastic blend textiles. In contrast, natural and regenerated cellulose fibers undergo complete biodegradation within approximately 35 days. Our results indicate that polylactic acid resists marine degradation for at least a year, and suggest that oil-based plastic/cellulose blends are a poor solution to mitigate plastic pollution. The results on polylactic acid further stress that compostability does not imply environmental degradation and that appropriate disposal management is crucial also for compostable plastics. Referring to compostable plastics as biodegradable plastics is misleading as it may convey the perception of a material that degrades in the environment. Conclusively, advances in disposable textiles should consider the environmental impact during their full life cycle, and the existence of environmentally degradable disposal should not represent an alibi for perpetuating destructive throw-away behaviors.


Subject(s)
Biodegradable Plastics , Ecosystem , Textiles , Polyethylene Terephthalates , Biodegradation, Environmental , Cellulose
5.
Sci Rep ; 12(1): 12666, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36050351

ABSTRACT

The subtropical oceanic gyre in the North Pacific Ocean is currently covered with tens of thousands of tonnes of floating plastic debris, dispersed over millions of square kilometres. A large fraction is composed of fishing nets and ropes while the rest is mostly composed of hard plastic objects and fragments, sometimes carrying evidence on their origin. In 2019, an oceanographic mission conducted in the area, retrieved over 6000 hard plastic debris items > 5 cm. The debris was later sorted, counted, weighed, and analysed for evidence of origin and age. Our results, complemented with numerical model simulations and findings from a previous oceanographic mission, revealed that a majority of the floating material stems from fishing activities. While recent assessments for plastic inputs into the ocean point to coastal developing economies and rivers as major contributors into oceanic plastic pollution, here we show that most floating plastics in the North Pacific subtropical gyre can be traced back to five industrialised fishing nations, highlighting the important role the fishing industry plays in the solution to this global issue.


Subject(s)
Hunting , Plastics , Environmental Monitoring/methods , Oceans and Seas , Pacific Ocean , Waste Products/analysis
6.
Elife ; 102021 08 23.
Article in English | MEDLINE | ID: mdl-34423781

ABSTRACT

Microglia, the brain's resident myeloid cells, play central roles in brain defense, homeostasis, and disease. Using a prolonged colony-stimulating factor 1 receptor inhibitor (CSF1Ri) approach, we report an unprecedented level of microglial depletion and establish a model system that achieves an empty microglial niche in the adult brain. We identify a myeloid cell that migrates from the subventricular zone and associated white matter areas. Following CSF1Ri, these amoeboid cells migrate radially and tangentially in a dynamic wave filling the brain in a distinct pattern, to replace the microglial-depleted brain. These repopulating cells are enriched in disease-associated microglia genes and exhibit similar phenotypic and transcriptional profiles to white-matter-associated microglia. Our findings shed light on the overlapping and distinct functional complexity and diversity of myeloid cells of the CNS and provide new insight into repopulating microglia function and dynamics in the mouse brain.


Subject(s)
Lateral Ventricles/physiology , Microglia/physiology , White Matter/physiology , Animals , Brain , Disease Models, Animal , Homeostasis , Inflammation , Male , Mice , Mice, Inbred C57BL , Myeloid Cells/cytology , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism
7.
Sci Total Environ ; 791: 148060, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34119782

ABSTRACT

As global production of textiles rapidly grows, there is urgency to understand the persistence of fabrics in the marine environment, particularly from the microfibers they shed during wearing and washing. Here, we show that fabrics containing polyester (one of the most common plastics) remained relatively intact (viz., with a limited biofilm) after >200 days in seawater off the Scripps Oceanography pier (La Jolla, CA), in contrast to wood-based cellulose fabrics that fell apart within 30 days. We also show similar results under experimental aquaria (in open circuit with the pier waters) as well as bioreactor settings (in close circuit, using microbial inoculum from the North Sea, off Belgium), using nonwoven fabrics and individual fibers, respectively. The fact that fibers released from synthetic textiles remain persistent and non-biodegradable despite their small (invisible) size, highlights concern for the growing industry that uses polyester from recycled plastics to make clothing.


Subject(s)
Laundering , Bioreactors , Cellulose , Plastics , Textiles , Wood
8.
Environ Sci Technol ; 53(21): 12218-12226, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31595747

ABSTRACT

Polymeric differences of plastic debris were assessed across four compartments of the Main Hawaiian Islands (sea surface, windward beaches, leeward beaches, and seafloor) to better describe sources and fate. Plastic debris pieces (n = 4671) were collected from 11 beaches, three sea surface tows, and three seafloor dives. Fourier transform infrared spectroscopy identified the polymers of 3551 pieces. Significant differences (p < 0.05) in concentration, types, polymer composition, and weathering were found among four compartments. Windward beaches had 1-2 orders of magnitude more plastic pollution (g/m2) than leeward beaches, despite smaller human populations on windward sides. Sea surface and windward beaches were dominated by severely weathered, less dense floating polymers (polyethylene and polypropylene comprised 92.7 and 93.5% on average, respectively, of the total debris mass), while leeward beaches and the seafloor debris consisted of less weathered and more dense sinking polymers (e.g., 41.0 and 44.7% of total mass consisted of the sum of polystyrene, nylon, cellulose acetate, polyethylene terephthalate, and additive-masked debris). These results are some of the first to provide evidence of polymeric stratification in the marine environment and emphasize that the majority of marine debris in Hawaii is floating in from distant sources rather than from Hawaii's residents or tourists.


Subject(s)
Environmental Monitoring , Polymers , Bathing Beaches , Hawaii , Humans , Islands , Plastics , Waste Products
9.
Sci Total Environ ; 691: 736-748, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31325871

ABSTRACT

Transparent exopolymer particles (TEP) are an abundant class of suspended organic particles, mainly formed by polysaccharides, which play important roles in biogeochemical and ecological processes in the ocean. In this study we investigated horizontal and vertical TEP distributions (within the euphotic layer, including the upper surface) and their short-term variability along with a suite of environmental and biological variables in four distinct regions of the Southern Ocean. TEP concentrations in the surface (4 m) averaged 102.3 ±â€¯40.4 µg XG eq. L-1 and typically decreased with depth. Chlorophyll a (Chl a) concentration was a better predictor of TEP variability across the horizontal (R2 = 0.66, p < 0.001) and vertical (R2 = 0.74, p < 0.001) scales than prokaryotic heterotrophic abundance and production. Incubation experiments further confirmed the main role of phytoplankton as TEP producers. The highest surface TEP concentrations were found north of the South Orkney Islands (144.4 ±â€¯21.7 µg XG eq. L-1), where the phytoplankton was dominated by cryptophytes and haptophytes; however, the highest TEP:Chl a ratios were found south of these islands (153.4 ±â€¯29.8 µg XG eq (µg Chl a)-1, compared to a mean of 79.3 ±â€¯54.9 µg XG eq (µg Chl a)-1 in the whole cruise, in association with haptophyte dominance, proximity of sea ice and high exposure to solar radiation. TEP were generally enriched in the upper surface (10 cm) respect to 4 m, despite a lack of biomass enrichment, suggesting either upward transport by positive buoyancy or bubble scavenging, or higher production at the upper surface by light stress or aggregation. TEP concentrations did not present any significant cyclic diel pattern. Altogether, our results suggest that photobiological stress, sea ice melt and turbulence add to phytoplankton productivity in driving TEP distribution across the Antarctic Peninsula area and Atlantic sector of the Southern Ocean.

10.
PLoS One ; 13(8): e0200574, 2018.
Article in English | MEDLINE | ID: mdl-30067755

ABSTRACT

Mass production of plastics started nearly 70 years ago and the production rate is expected to double over the next two decades. While serving many applications because of their durability, stability and low cost, plastics have deleterious effects on the environment. Plastic is known to release a variety of chemicals during degradation, which has a negative impact on biota. Here, we show that the most commonly used plastics produce two greenhouse gases, methane and ethylene, when exposed to ambient solar radiation. Polyethylene, which is the most produced and discarded synthetic polymer globally, is the most prolific emitter of both gases. We demonstrate that the production of trace gases from virgin low-density polyethylene increase with time, with rates at the end of a 212-day incubation of 5.8 nmol g-1 d-1 of methane, 14.5 nmol g-1 d-1 of ethylene, 3.9 nmol g-1 d-1 of ethane and 9.7 nmol g-1 d-1 of propylene. Environmentally aged plastics incubated in water for at least 152 days also produced hydrocarbon gases. In addition, low-density polyethylene emits these gases when incubated in air at rates ~2 times and ~76 times higher than when incubated in water for methane and ethylene, respectively. Our results show that plastics represent a heretofore unrecognized source of climate-relevant trace gases that are expected to increase as more plastic is produced and accumulated in the environment.


Subject(s)
Ethylenes/metabolism , Methane/metabolism , Plastics/metabolism , Ethylenes/chemistry , Hydrocarbons/chemistry , Hydrocarbons/metabolism , Methane/chemistry , Plastics/chemistry , Polyethylene/chemistry , Sunlight
11.
Mar Pollut Bull ; 127: 704-716, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29475714

ABSTRACT

Polymer identification of plastic marine debris can help identify its sources, degradation, and fate. We optimized and validated a fast, simple, and accessible technique, attenuated total reflectance Fourier transform infrared spectroscopy (ATR FT-IR), to identify polymers contained in plastic ingested by sea turtles. Spectra of consumer good items with known resin identification codes #1-6 and several #7 plastics were compared to standard and raw manufactured polymers. High temperature size exclusion chromatography measurements confirmed ATR FT-IR could differentiate these polymers. High-density (HDPE) and low-density polyethylene (LDPE) discrimination is challenging but a clear step-by-step guide is provided that identified 78% of ingested PE samples. The optimal cleaning methods consisted of wiping ingested pieces with water or cutting. Of 828 ingested plastics pieces from 50 Pacific sea turtles, 96% were identified by ATR FT-IR as HDPE, LDPE, unknown PE, polypropylene (PP), PE and PP mixtures, polystyrene, polyvinyl chloride, and nylon.


Subject(s)
Environmental Monitoring/methods , Plastics/analysis , Turtles/metabolism , Waste Products/analysis , Water Pollutants, Chemical/analysis , Animals , Eating , Environmental Monitoring/instrumentation , Gastrointestinal Contents/chemistry , Molecular Structure , Pacific Ocean , Sensitivity and Specificity , Spectroscopy, Fourier Transform Infrared , United States
12.
Nat Commun ; 8(1): 201, 2017 08 04.
Article in English | MEDLINE | ID: mdl-28779070

ABSTRACT

The atmosphere plays a fundamental role in the transport of microbes across the planet but it is often neglected as a microbial habitat. Although the ocean represents two thirds of the Earth's surface, there is little information on the atmospheric microbial load over the open ocean. Here we provide a global estimate of microbial loads and air-sea exchanges over the tropical and subtropical oceans based on the data collected along the Malaspina 2010 Circumnavigation Expedition. Total loads of airborne prokaryotes and eukaryotes were estimated at 2.2 × 1021 and 2.1 × 1021 cells, respectively. Overall 33-68% of these microorganisms could be traced to a marine origin, being transported thousands of kilometres before re-entering the ocean. Moreover, our results show a substantial load of terrestrial microbes transported over the oceans, with abundances declining exponentially with distance from land and indicate that islands may act as stepping stones facilitating the transoceanic transport of terrestrial microbes.The extent to which the ocean acts as a sink and source of airborne particles to the atmosphere is unresolved. Here, the authors report high microbial loads over the tropical Atlantic, Pacific and Indian oceans and propose islands as stepping stones for the transoceanic transport of terrestrial microbes..


Subject(s)
Air Microbiology , Bacteria/isolation & purification , Seawater/microbiology , Atlantic Ocean , Bacteria/classification , Bacteria/genetics , Ecosystem , Indian Ocean , Pacific Ocean
13.
Sci Rep ; 6: 29286, 2016 07 11.
Article in English | MEDLINE | ID: mdl-27404551

ABSTRACT

Mixotrophs combine photosynthesis with phagotrophy to cover their demands in energy and essential nutrients. This gives them a competitive advantage under oligotropihc conditions, where nutrients and bacteria concentrations are low. As the advantage for the mixotroph depends on light, the competition between mixo- and heterotrophic bacterivores should be regulated by light. To test this hypothesis, we incubated natural plankton from the ultra-oligotrophic Eastern Mediterranean in a set of mesocosms maintained at 4 light levels spanning a 10-fold light gradient. Picoplankton (heterotrophic bacteria (HB), pico-sized cyanobacteria, and small-sized flagellates) showed the fastest and most marked response to light, with pronounced predator-prey cycles, in the high-light treatments. Albeit cell specific activity of heterotrophic bacteria was constant across the light gradient, bacterial abundances exhibited an inverse relationship with light. This pattern was explained by light-induced top-down control of HB by bacterivorous phototrophic eukaryotes (PE), which was evidenced by a significant inverse relationship between HB net growth rate and PE abundances. Our results show that light mediates the impact of mixotrophic bacterivores. As mixo- and heterotrophs differ in the way they remineralize nutrients, these results have far-reaching implications for how nutrient cycling is affected by light.


Subject(s)
Light , Photosynthesis , Plankton/physiology , Animals , Autotrophic Processes , Biomass , Ecosystem , Heterotrophic Processes , Mediterranean Sea , Organ Specificity , Predatory Behavior
15.
J Neuroinflammation ; 12: 56, 2015 Mar 25.
Article in English | MEDLINE | ID: mdl-25888781

ABSTRACT

BACKGROUND: Chronic neuroinflammation and calcium (Ca(+2)) dysregulation are both components of Alzheimer's disease. Prolonged neuroinflammation produces elevation of pro-inflammatory cytokines and reactive oxygen species which can alter neuronal Ca(+2) homeostasis via L-type voltage-dependent Ca(+2) channels (L-VDCCs) and ryanodine receptors (RyRs). Chronic neuroinflammation also leads to deficits in spatial memory, which may be related to Ca(+2) dysregulation. METHODS: The studies herein use an in vivo model of chronic neuroinflammation: rats were infused intraventricularly with a continuous small dose of lipopolysaccharide (LPS) or artificial cerebrospinal fluid (aCSF) for 28 days. The rats were treated with the L-VDCC antagonist nimodipine or the RyR antagonist dantrolene. RESULTS: LPS-infused rats had significant memory deficits in the Morris water maze, and this deficit was ameliorated by treatment with nimodipine. Synaptosomes from LPS-infused rats had increased Ca(+2) uptake, which was reduced by a blockade of L-VDCCs either in vivo or ex vivo. CONCLUSIONS: Taken together, these data indicate that Ca(+2) dysregulation during chronic neuroinflammation is partially dependent on increases in L-VDCC function. However, blockade of the RyRs also slightly improved spatial memory of the LPS-infused rats, demonstrating that other Ca(+2) channels are dysregulated during chronic neuroinflammation. Ca(+2)-dependent immediate early gene expression was reduced in LPS-infused rats treated with dantrolene or nimodipine, indicating normalized synaptic function that may underlie improvements in spatial memory. Pro-inflammatory markers are also reduced in LPS-infused rats treated with either drug. Overall, these data suggest that Ca(+2) dysregulation via L-VDCCs and RyRs play a crucial role in memory deficits resulting from chronic neuroinflammation.


Subject(s)
Calcium Channels, L-Type/metabolism , Calcium/metabolism , Encephalitis/complications , Encephalitis/pathology , Memory Disorders/etiology , Ryanodine Receptor Calcium Release Channel/metabolism , AIDS-Related Complex/metabolism , Analysis of Variance , Animals , Calcium Channel Blockers/therapeutic use , Calcium Channels, L-Type/genetics , Chronic Disease , Dantrolene/therapeutic use , Disease Models, Animal , Encephalitis/chemically induced , Encephalitis/drug therapy , Gene Expression Regulation/drug effects , Lipopolysaccharides/toxicity , Maze Learning/drug effects , Memory Disorders/drug therapy , Muscle Relaxants, Central/therapeutic use , Nimodipine/therapeutic use , Rats , Rats, Inbred F344 , Ryanodine Receptor Calcium Release Channel/genetics , Spatial Memory/drug effects
16.
J Neuroinflammation ; 12: 63, 2015 Apr 02.
Article in English | MEDLINE | ID: mdl-25889938

ABSTRACT

The role of insulin in the brain is still not completely understood. In the periphery, insulin can decrease inflammation induced by lipopolysaccharide (LPS); however, whether insulin can reduce inflammation within the brain is unknown. Experiments administrating intranasal insulin to young and aged adults have shown that insulin improves memory. In our animal model of chronic neuroinflammation, we administered insulin and/or LPS directly into the brain via the fourth ventricle for 4 weeks in young rats; we then analyzed their spatial memory and neuroinflammatory response. Additionally, we administered insulin or artificial cerebral spinal fluid (aCSF), in the same manner, to aged rats and then analyzed their spatial memory and neuroinflammatory response. Response to chronic neuroinflammation in young rats was analyzed in the presence or absence of insulin supplementation. Here, we show for the first time that insulin infused (i.c.v.) to young rats significantly attenuated the effects of LPS by decreasing the expression of neuroinflammatory markers in the hippocampus and by improving performance in the Morris water pool task. In young rats, insulin infusion alone significantly improved their performance as compared to all other groups. Unexpectedly, in aged rats, the responsiveness to insulin was completely absent, that is, spatial memory was still impaired suggesting that an age-dependent insulin resistance may contribute to the cognitive impairment observed in neurodegenerative diseases. Our data suggest a novel therapeutic effect of insulin on neuroinflammation in the young but not the aged brain.


Subject(s)
Aging , Encephalitis/complications , Encephalitis/pathology , Hippocampus/metabolism , Insulin/therapeutic use , Memory Disorders/drug therapy , Analysis of Variance , Animals , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Encephalitis/chemically induced , Encephalitis/drug therapy , Gene Expression Regulation/drug effects , Hippocampus/drug effects , Male , Maze Learning/drug effects , Memory Disorders/etiology , Protein Kinase C/metabolism , Rats , Rats, Inbred F344 , Reaction Time/drug effects , Spatial Memory/drug effects
17.
J Neuroimmune Pharmacol ; 10(1): 35-44, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25318607

ABSTRACT

Neuroinflammation and degeneration of catecholaminergic brainstem nuclei occur early in neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Neuroinflammation increases levels of pro-inflammatory cytokines and reactive oxygen species which can alter neuronal calcium (Ca(+2)) homoeostasis via L-type voltage dependent calcium channels (L-VDCCs) and ryanodine receptors (RyRs). Alterations in Ca(+2) channel activity in the SN and LC can lead to disruption of normal pacemaking activity in these areas, contributing to behavioral deficits. Here, we utilized an in vivo model of chronic neuroinflammation: rats were infused intraventricularly with a continuous small dose (0.25 µg/h) of lipopolysaccharide (LPS) or artificial cerebrospinal fluid (aCSF) for 28 days. Rats were treated with either the L-VDCC antagonist nimodipine or the RyR antagonist dantrolene. LPS-infused rats had significant motor deficits in the accelerating rotarod task as well as abnormal behavioral agitation in the forced swim task and open field. Corresponding with these behavioral deficits, LPS-infused rats also had significant increases in microglia activation and loss of tyrosine hydroxylase (TH) immunoreactivity in the substantia nigra pars compacta (SNpc) and locus coeruleus (LC). Treatment with nimodipine or dantrolene normalized LPS-induced abnormalities in the rotarod and forced swim, restored the number of TH-immunoreactive cells in the LC, and significantly reduced microglia activation in the SNpc. Only nimodipine significantly reduced microglia activation in the LC, and neither drug increased TH immunoreactivity in the SNpc. These findings demonstrate that the Ca(+2) dysregulation in the LC and SN brainstem nuclei is differentially altered by chronic neuroinflammation. Overall, targeting Ca + 2 dysregulation may be an important target for ameliorating neurodegeneration in the SNpc and LC.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Calcium Channel Blockers/pharmacology , Calcium Channels, L-Type/drug effects , Locus Coeruleus/drug effects , Neuroprotective Agents/pharmacology , Ryanodine Receptor Calcium Release Channel/drug effects , Substantia Nigra/drug effects , Animals , Behavior, Animal/drug effects , Dopaminergic Neurons/drug effects , Locus Coeruleus/pathology , Male , Motor Activity/drug effects , Postural Balance/drug effects , Rats , Rats, Inbred F344 , Substantia Nigra/pathology , Swimming/psychology
18.
J Neuroimmunol ; 267(1-2): 86-91, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24393520

ABSTRACT

The pro-inflammatory cytokine IL-1ß is known to play a role in several models of aging, neuroinflammation, and neurodegenerative diseases. Here, we document a detailed time- and age-dependent pattern of pro- and anti-inflammatory biomarkers following bilateral intrahippocampal injection of interleukin-1ß. During the first 12h several pro- and anti-inflammatory cytokines increased in the aged (24 mo old) rats, some of which returned to baseline levels by 24h post-injection while others remained elevated for 72 h post-injection. In contrast, no such increases were observed in the young (3 mo old) rats. Interestingly, young rats up-regulated mRNA of two pro-inflammatory cytokines, interleukin-1ß and tumor necrosis factor-α, but did not translate these transcripts into functional proteins, which may be related to expression of suppressor of cytokine signaling type-2. These results contribute to our understanding of how neuroinflammation may contribute to the pathogenesis of age-related neurodegenerative disorders due to an age-related bias towards a hyper-reactive immune response that is not selective for a pro- or anti-inflammatory phenotype following an inflammatory stimulus.


Subject(s)
Aging , Cytokines/metabolism , Hippocampus/drug effects , Interleukin-1beta/pharmacology , Signal Transduction/drug effects , Analysis of Variance , Animals , Cytokines/genetics , Gene Expression Regulation/drug effects , Male , RNA, Messenger/metabolism , Rats , Rats, Inbred F344 , Receptors, CXCR3/genetics , Receptors, CXCR3/metabolism , Suppressor of Cytokine Signaling Proteins/genetics , Suppressor of Cytokine Signaling Proteins/metabolism , Time Factors , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
19.
Neurobiol Aging ; 35(5): 1065-73, 2014 May.
Article in English | MEDLINE | ID: mdl-24315728

ABSTRACT

Neuroinflammation and degeneration of ascending catecholaminergic systems occur early in the neurodegenerative process. Age and the duration of a pro-inflammatory environment induced by continuous intraventricular lipopolysaccharide (LPS) differentially affect the expression profile of pro- and anti-inflammatory genes and proteins as well as the number of activated microglia (express major histocompatibility complex II; MHC II) and the integrity and density of ascending catecholaminergic neural systems originating from the locus coeruleus (LC) and substantia nigra pars compacta (SNpc) in rats. LPS infusion increased gene expression and/or protein levels for both pro- and anti-inflammatory biomarkers. Although LPS infusion stimulated a robust increase in IL-1ß gene and protein expression, this increase was blunted with age. LPS infusion also increased the density of activated microglia cells throughout the midbrain and brainstem. Corresponding to the development of a pro-inflammatory environment, LC and SNpc neurons immunopositive for tyrosine-hydroxylase (the rate-limiting synthetic enzyme for dopamine and norepinephrine) decreased in number, along with a decrease in tyrosine-hydroxylase gene expression in the midbrain and/or brainstem region. Our data support the concept that continuous exposure to a pro-inflammatory environment drives exaggerated changes in the production and release of inflammatory mediators that interact with age to impair functional capacity of the SNpc and LC.


Subject(s)
Aging/immunology , Aging/pathology , Catecholamines/physiology , Inflammation/genetics , Inflammation/pathology , Locus Coeruleus/immunology , Locus Coeruleus/pathology , Neuroimmunomodulation/genetics , Neurons/immunology , Neurons/pathology , Substantia Nigra/immunology , Substantia Nigra/pathology , Aging/genetics , Animals , Gene Expression , Inflammation Mediators/metabolism , Inflammation Mediators/physiology , Interleukin-1beta/metabolism , Lipopolysaccharides/immunology , Male , Microglia/immunology , Microglia/pathology , Neurodegenerative Diseases/immunology , Neurodegenerative Diseases/pathology , Peptide Fragments/metabolism , Rats , Rats, Inbred F344 , Rats, Sprague-Dawley , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...