Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Methods Programs Biomed ; 229: 107302, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36528999

ABSTRACT

BACKGROUND AND OBJECTIVE: Age-related macular degeneration (AMD) is an eye disease that happens when ageing causes damage to the macula, and it is the leading cause of blindness in developed countries. Screening retinal fundus images allows ophthalmologists to early detect, diagnose and treat this disease; however, the manual interpretation of images is a time-consuming task. In this paper, we aim to study different deep learning methods to diagnose AMD. METHODS: We have conducted a thorough study of two families of deep learning models based on convolutional neural networks (CNN) and transformer architectures to automatically diagnose referable/non-referable AMD, and grade AMD severity scales (no AMD, early AMD, intermediate AMD, and advanced AMD). In addition, we have analysed several progressive resizing strategies and ensemble methods for convolutional-based architectures to further improve the performance of the models. RESULTS: As a first result, we have shown that transformer-based architectures obtain considerably worse results than convolutional-based architectures for diagnosing AMD. Moreover, we have built a model for diagnosing referable AMD that yielded a mean F1-score (SD) of 92.60% (0.47), a mean AUROC (SD) of 97.53% (0.40), and a mean weighted kappa coefficient (SD) of 85.28% (0.91); and an ensemble of models for grading AMD severity scales with a mean accuracy (SD) of 82.55% (2.92), and a mean weighted kappa coefficient (SD) of 84.76% (2.45). CONCLUSIONS: This work shows that working with convolutional based architectures is more suitable than using transformer based models for classifying and grading AMD from retinal fundus images. Furthermore, convolutional models can be improved by means of progressive resizing strategies and ensemble methods.


Subject(s)
Macula Lutea , Macular Degeneration , Humans , Reproducibility of Results , Macular Degeneration/diagnostic imaging , Neural Networks, Computer , Fundus Oculi
2.
Graefes Arch Clin Exp Ophthalmol ; 260(10): 3255-3265, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35567610

ABSTRACT

PURPOSE: This study aims to evaluate the ability of an autonomous artificial intelligence (AI) system for detection of the most common central retinal pathologies in fundus photography. METHODS: Retrospective diagnostic test evaluation on a raw dataset of 5918 images (2839 individuals) evaluated with non-mydriatic cameras during routine occupational health checkups. Three camera models were employed: Optomed Aurora (field of view - FOV 50º, 88% of the dataset), ZEISS VISUSCOUT 100 (FOV 40º, 9%), and Optomed SmartScope M5 (FOV 40º, 3%). Image acquisition took 2 min per patient. Ground truth for each image of the dataset was determined by 2 masked retina specialists, and disagreements were resolved by a 3rd retina specialist. The specific pathologies considered for evaluation were "diabetic retinopathy" (DR), "Age-related macular degeneration" (AMD), "glaucomatous optic neuropathy" (GON), and "Nevus." Images with maculopathy signs that did not match the described taxonomy were classified as "Other." RESULTS: The combination of algorithms to detect any abnormalities had an area under the curve (AUC) of 0.963 with a sensitivity of 92.9% and a specificity of 86.8%. The algorithms individually obtained are as follows: AMD AUC 0.980 (sensitivity 93.8%; specificity 95.7%), DR AUC 0.950 (sensitivity 81.1%; specificity 94.8%), GON AUC 0.889 (sensitivity 53.6% specificity 95.7%), Nevus AUC 0.931 (sensitivity 86.7%; specificity 90.7%). CONCLUSION: Our holistic AI approach reaches high diagnostic accuracy at simultaneous detection of DR, AMD, and Nevus. The integration of pathology-specific algorithms permits higher sensitivities with minimal impact on its specificity. It also reduces the risk of missing incidental findings. Deep learning may facilitate wider screenings of eye diseases.


Subject(s)
Diabetic Retinopathy , Glaucoma , Macular Degeneration , Nevus , Occupational Health , Optic Nerve Diseases , Artificial Intelligence , Diabetic Retinopathy/diagnosis , Glaucoma/diagnosis , Humans , Optic Nerve Diseases/diagnosis , Photography/methods , ROC Curve , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...