Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Ann Rheum Dis ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38964754

ABSTRACT

OBJECTIVES: Metabolic changes are crucially involved in osteoclast development and may contribute to bone degradation in rheumatoid arthritis (RA). The enzyme aconitate decarboxylase 1 (Acod1) is known to link the cellular function of monocyte-derived macrophages to their metabolic status. As osteoclasts derive from the monocyte lineage, we hypothesised a role for Acod1 and its metabolite itaconate in osteoclast differentiation and arthritis-associated bone loss. METHODS: Itaconate levels were measured in human peripheral blood mononuclear cells (PBMCs) of patients with RA and healthy controls by mass spectrometry. Human and murine osteoclasts were treated with the itaconate derivative 4-octyl-itaconate (4-OI) in vitro. We examined the impact of Acod1-deficiency and 4-OI treatment on bone erosion in mice using K/BxN serum-induced arthritis and human TNF transgenic (hTNFtg) mice. SCENITH and extracellular flux analyses were used to evaluate the metabolic activity of osteoclasts and osteoclast progenitors. Acod1-dependent and itaconate-dependent changes in the osteoclast transcriptome were identified by RNA sequencing. CRISPR/Cas9 gene editing was used to investigate the role of hypoxia-inducible factor (Hif)-1α in Acod1-mediated regulation of osteoclast development. RESULTS: Itaconate levels in PBMCs from patients with RA were inversely correlated with disease activity. Acod1-deficient mice exhibited increased osteoclast numbers and bone erosion in experimental arthritis while 4-OI treatment alleviated inflammatory bone loss in vivo and inhibited human and murine osteoclast differentiation in vitro. Mechanistically, Acod1 suppressed osteoclast differentiation by inhibiting succinate dehydrogenase-dependent production of reactive oxygen species and Hif1α-mediated induction of aerobic glycolysis. CONCLUSION: Acod1 and itaconate are crucial regulators of osteoclast differentiation and bone loss in inflammatory arthritis.

2.
iScience ; 26(12): 108289, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38034352

ABSTRACT

Peritoneal adhesions are poorly understood but highly prevalent conditions that can cause intestinal obstruction and pelvic pain requiring surgery. While there is consensus that stress-induced inflammation triggers peritoneal adhesions, the molecular processes of their formation still remain elusive. We performed murine models and analyzed human samples to monitor the formation of adhesions and the treatment with DNases. Various molecular analyses were used to evaluate the adhesions. The experimental peritoneal adhesions of the murine models and biopsy material from humans are largely based on neutrophil extracellular traps (NETs). Treatment with DNASE1 (Dornase alfa) and the human DNASE1L3 analog (NTR-10), significantly reduced peritoneal adhesions in experimental models. We conclude that NETs serve as essential scaffold for the formation of adhesions; DNases interfere with this process. Herein, we show that therapeutic application of DNases can be employed to prevent the formation of murine peritoneal adhesions. If this can be translated into the human situation requires clinical studies.

3.
Nat Commun ; 14(1): 4601, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37528070

ABSTRACT

Microglial activation during neuroinflammation is crucial for coordinating the immune response against neuronal tissue, and the initial response of microglia determines the severity of neuro-inflammatory diseases. The CD83 molecule has been recently shown to modulate the activation status of dendritic cells and macrophages. Although the expression of CD83 is associated with early microglia activation in various disease settings, its functional relevance for microglial biology has been elusive. Here, we describe a thorough assessment of CD83 regulation in microglia and show that CD83 expression in murine microglia is not only associated with cellular activation but also with pro-resolving functions. Using single-cell RNA-sequencing, we reveal that conditional deletion of CD83 results in an over-activated state during neuroinflammation in the experimental autoimmune encephalomyelitis model. Subsequently, CD83-deficient microglia recruit more pathogenic immune cells to the central nervous system, deteriorating resolving mechanisms and exacerbating the disease. Thus, CD83 in murine microglia orchestrates cellular activation and, consequently, also the resolution of neuroinflammation.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Mice , Animals , Microglia/metabolism , Neuroinflammatory Diseases , Central Nervous System/metabolism , Macrophages/metabolism , Mice, Inbred C57BL
4.
Int J Mol Sci ; 24(9)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37175508

ABSTRACT

The aryl hydrocarbon receptor (AhR) is a decisive regulatory ligand-dependent transcription factor. It binds highly diverse ligands, which can be categorized as either endogenous or exogenous. Ligand binding activates AhR, which can adjust inflammatory responses by modulating immune cells such as dendritic cells (DCs). However, how different AhR ligand classes impact the phenotype and function of human monocyte-derived DCs (hMoDCs) has not been extensively studied in a comparative manner. We, therefore, tested the effect of the representative compounds Benzo(a)pyrene (BP), 6-formylindolo[3,2-b]carbazole (FICZ), and Indoxyl 3-sulfate (I3S) on DC biology. Thereby, we reveal that BP significantly induces a tolerogenic response in lipopolysaccharide-matured DCs, which is not apparent to the same extent when using FICZ or I3S. While all three ligand classes activate AhR-dependent pathways, BP especially induces the expression of negative immune regulators, and subsequently strongly subverts the T cell stimulatory capacity of DCs. Using the CRISPR/Cas9 strategy we also prove that the regulatory effect of BP is strictly AhR-dependent. These findings imply that AhR ligands contribute differently to DC responses and incite further studies to uncover the mechanisms and molecules which are involved in the induction of different phenotypes and functions in DCs upon AhR activation.


Subject(s)
Gene Expression Regulation , Receptors, Aryl Hydrocarbon , Humans , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Ligands , Carbazoles/pharmacology , Carbazoles/metabolism , Indican/metabolism , Dendritic Cells , Biology
5.
Front Immunol ; 14: 1095830, 2023.
Article in English | MEDLINE | ID: mdl-36969253

ABSTRACT

Systemic lupus erythematosus (SLE) is a severe autoimmune disease that displays considerable heterogeneity not only in its symptoms, but also in its environmental and genetic causes. Studies in SLE patients have revealed that many genetic variants contribute to disease development. However, often its etiology remains unknown. Existing efforts to determine this etiology have focused on SLE in mouse models revealing not only that mutations in specific genes lead to SLE development, but also that epistatic effects of several gene mutations significantly amplify disease manifestation. Genome-wide association studies for SLE have identified loci involved in the two biological processes of immune complex clearance and lymphocyte signaling. Deficiency in an inhibitory receptor expressed on B lymphocytes, Siglec-G, has been shown to trigger SLE development in aging mice, as have mutations in DNA degrading DNase1 and DNase1l3, that are involved in clearance of DNA-containing immune complexes. Here, we analyze the development of SLE-like symptoms in mice deficient in either Siglecg and DNase1 or Siglecg and DNase1l3 to evaluate potential epistatic effects of these genes. We found that germinal center B cells and follicular helper T cells were increased in aging Siglecg -/- x Dnase1 -/- mice. In contrast, anti-dsDNA antibodies and anti-nuclear antibodies were strongly increased in aging Siglecg-/- x Dnase1l3-/- mice, when compared to single-deficient mice. Histological analysis of the kidneys revealed glomerulonephritis in both Siglecg -/- x Dnase1 -/- and Siglecg-/- x Dnase1l3-/- mice, but with a stronger glomerular damage in the latter. Collectively, these findings underscore the impact of the epistatic effects of Siglecg with DNase1 and Dnase1l3 on disease manifestation and highlight the potential combinatory effects of other gene mutations in SLE.


Subject(s)
Deoxyribonuclease I , Endodeoxyribonucleases , Genome-Wide Association Study , Lupus Erythematosus, Systemic , Sialic Acid Binding Immunoglobulin-like Lectins , Animals , Mice , Disease Models, Animal , DNA , Endodeoxyribonucleases/genetics , Lupus Erythematosus, Systemic/genetics , Deoxyribonuclease I/genetics , Sialic Acid Binding Immunoglobulin-like Lectins/genetics
6.
Front Immunol ; 14: 1085742, 2023.
Article in English | MEDLINE | ID: mdl-36875129

ABSTRACT

Excessive macrophage (Mφ) activation results in chronic inflammatory responses or autoimmune diseases. Therefore, identification of novel immune checkpoints on Mφ, which contribute to resolution of inflammation, is crucial for the development of new therapeutic agents. Herein, we identify CD83 as a marker for IL-4 stimulated pro-resolving alternatively activated Mφ (AAM). Using a conditional KO mouse (cKO), we show that CD83 is important for the phenotype and function of pro-resolving Mφ. CD83-deletion in IL-4 stimulated Mφ results in decreased levels of inhibitory receptors, such as CD200R and MSR-1, which correlates with a reduced phagocytic capacity. In addition, CD83-deficient Mφ upon IL-4 stimulation, show an altered STAT-6 phosphorylation pattern, which is characterized by reduced pSTAT-6 levels and expression of the target gene Gata3. Concomitantly, functional studies in IL-4 stimulated CD83 KO Mφ reveal an increased production of pro-inflammatory mediators, such as TNF-α, IL-6, CXCL1 and G-CSF. Furthermore, we show that CD83-deficient Mφ have enhanced capacities to stimulate the proliferation of allo-reactive T cells, which was accompanied by reduced frequencies of Tregs. In addition, we show that CD83 expressed by Mφ is important to limit the inflammatory phase using a full-thickness excision wound healing model, since inflammatory transcripts (e.g. Cxcl1, Il6) were increased, whilst resolving transcripts (e.g. Ym1, Cd200r, Msr-1) were decreased in wounds at day 3 after wound infliction, which reflects the CD83 resolving function on Mφ also in vivo. Consequently, this enhanced inflammatory milieu led to an altered tissue reconstitution after wound infliction. Thus, our data provide evidence that CD83 acts as a gatekeeper for the phenotype and function of pro-resolving Mφ.


Subject(s)
Immune Checkpoint Proteins , Interleukin-4 , Animals , Mice , Macrophages , Phagocytes , Inflammation
7.
Front Immunol ; 14: 1293828, 2023.
Article in English | MEDLINE | ID: mdl-38162675

ABSTRACT

Alterations in macrophage (Mφ) polarization, function, and metabolic signature can foster development of chronic diseases, such as autoimmunity or fibrotic tissue remodeling. Thus, identification of novel therapeutic agents that modulate human Mφ biology is crucial for treatment of such conditions. Herein, we demonstrate that the soluble CD83 (sCD83) protein induces pro-resolving features in human monocyte-derived Mφ biology. We show that sCD83 strikingly increases the expression of inhibitory molecules including ILT-2 (immunoglobulin-like transcript 2), ILT-4, ILT-5, and CD163, whereas activation markers, such as MHC-II and MSR-1, were significantly downregulated. This goes along with a decreased capacity to stimulate alloreactive T cells in mixed lymphocyte reaction (MLR) assays. Bulk RNA sequencing and pathway analyses revealed that sCD83 downregulates pathways associated with pro-inflammatory, classically activated Mφ (CAM) differentiation including HIF-1A, IL-6, and cytokine storm, whereas pathways related to alternative Mφ activation and liver X receptor were significantly induced. By using the LXR pathway antagonist GSK2033, we show that transcription of specific genes (e.g., PPARG, ABCA1, ABCG1, CD36) induced by sCD83 is dependent on LXR activation. In summary, we herein reveal for the first time mechanistic insights into the modulation of human Mφ biology by sCD83, which is a further crucial preclinical study for the establishment of sCD83 as a new therapeutical agent to treat inflammatory conditions.


Subject(s)
CD83 Antigen , Macrophages , T-Lymphocytes , Humans , Cell Differentiation , Phenotype
8.
Front Immunol ; 13: 1012647, 2022.
Article in English | MEDLINE | ID: mdl-36248909

ABSTRACT

To facilitate the recovery process of chronic and hard-to-heal wounds novel pro-resolving treatment options are urgently needed. We investigated the pro-regenerative properties of soluble CD83 (sCD83) on cutaneous wound healing, where sCD83 accelerated wound healing not only after systemic but also after topical application, which is of high therapeutic interest. Cytokine profile analyses revealed an initial upregulation of inflammatory mediators such as TNFα and IL-1ß, followed by a switch towards pro-resolving factors, including YM-1 and IL-10, both expressed by tissue repair macrophages. These cells are known to mediate resolution of inflammation and stimulate wound healing processes by secretion of growth factors such as epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF), which promote vascularization as well as fibroblast and keratinocyte differentiation. In conclusion, we have found strong wound healing capacities of sCD83 beyond the previously described role in transplantation and autoimmunity. This makes sCD83 a promising candidate for the treatment of chronic- and hard-to-heal wounds.


Subject(s)
Interleukin-10 , Tumor Necrosis Factor-alpha , Epidermal Growth Factor , Inflammation Mediators/metabolism , Interleukin-10/metabolism , Macrophages , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/metabolism , Wound Healing/physiology
9.
Front Immunol ; 13: 936995, 2022.
Article in English | MEDLINE | ID: mdl-36003376

ABSTRACT

Here we show that soluble CD83 induces the resolution of inflammation in an antigen-induced arthritis (AIA) model. Joint swelling and the arthritis-related expression levels of IL-1ß, IL-6, RANKL, MMP9, and OC-Stamp were strongly reduced, while Foxp3 was induced. In addition, we observed a significant inhibition of TRAP+ osteoclast formation, correlating with the reduced arthritic disease score. In contrast, cell-specific deletion of CD83 in human and murine precursor cells resulted in an enhanced formation of mature osteoclasts. RNA sequencing analyses, comparing sCD83- with mock treated cells, revealed a strong downregulation of osteoclastogenic factors, such as Oc-Stamp, Mmp9 and Nfatc1, Ctsk, and Trap. Concomitantly, transcripts typical for pro-resolving macrophages, e.g., Mrc1/2, Marco, Klf4, and Mertk, were upregulated. Interestingly, members of the metallothionein (MT) family, which have been associated with a reduced arthritic disease severity, were also highly induced by sCD83 in samples derived from RA patients. Finally, we elucidated the sCD83-induced signaling cascade downstream to its binding to the Toll-like receptor 4/(TLR4/MD2) receptor complex using CRISPR/Cas9-induced knockdowns of TLR4/MyD88/TRIF and MTs, revealing that sCD83 acts via the TRIF-signaling cascade. In conclusion, sCD83 represents a promising therapeutic approach to induce the resolution of inflammation and to prevent bone erosion in autoimmune arthritis.


Subject(s)
Antigens, CD , Arthritis , Immunoglobulins , Membrane Glycoproteins , Osteolysis , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Antigens, CD/metabolism , Arthritis/metabolism , Humans , Immunoglobulins/metabolism , Inflammation/metabolism , Matrix Metalloproteinase 9/metabolism , Membrane Glycoproteins/metabolism , Mice , Osteoclasts/metabolism , Osteolysis/metabolism , Toll-Like Receptor 4/metabolism , CD83 Antigen
10.
Int J Mol Sci ; 23(2)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35054916

ABSTRACT

Chronic inflammatory diseases and transplant rejection represent major challenges for modern health care. Thus, identification of immune checkpoints that contribute to resolution of inflammation is key to developing novel therapeutic agents for those conditions. In recent years, the CD83 (cluster of differentiation 83) protein has emerged as an interesting potential candidate for such a "pro-resolution" therapy. This molecule occurs in a membrane-bound and a soluble isoform (mCD83 and sCD83, respectively), both of which are involved in resolution of inflammation. Originally described as a maturation marker on dendritic cells (DCs), mCD83 is also expressed by activated B and T cells as well as regulatory T cells (Tregs) and controls turnover of MHC II molecules in the thymus, and thereby positive selection of CD4+ T cells. Additionally, it serves to confine overshooting (auto-)immune responses. Consequently, animals with a conditional deletion of CD83 in DCs or regulatory T cells suffer from impaired resolution of inflammation. Pro-resolving effects of sCD83 became evident in pre-clinical autoimmune and transplantation models, where application of sCD83 reduced disease symptoms and enhanced allograft survival, respectively. Here, we summarize recent advances regarding CD83-mediated resolution of inflammatory responses, its binding partners as well as induced signaling pathways, and emphasize its therapeutic potential for future clinical trials.


Subject(s)
Antigens, CD/metabolism , Immune Checkpoint Proteins/metabolism , Immunoglobulins/metabolism , Inflammation/etiology , Inflammation/metabolism , Membrane Glycoproteins/metabolism , Animals , Antigens, CD/chemistry , Antigens, CD/genetics , Biomarkers , Dendritic Cells/immunology , Dendritic Cells/metabolism , Diagnosis, Differential , Disease Management , Disease Susceptibility , Gene Expression Regulation , Humans , Immune Checkpoint Proteins/genetics , Immunoglobulins/chemistry , Immunoglobulins/genetics , Inflammation/diagnosis , Inflammation/drug therapy , Lymphocytes/immunology , Lymphocytes/metabolism , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/genetics , Signal Transduction , Structure-Activity Relationship , CD83 Antigen
11.
Am J Transplant ; 22(2): 438-454, 2022 02.
Article in English | MEDLINE | ID: mdl-34467638

ABSTRACT

Immune responses reflect a complex interplay of cellular and extracellular components which define the microenvironment of a tissue. Therefore, factors that locally influence the microenvironment and re-establish tolerance might be beneficial to mitigate immune-mediated reactions, including the rejection of a transplant. In this study, we demonstrate that pre-incubation of donor tissue with the immune modulator soluble CD83 (sCD83) significantly improves graft survival using a high-risk corneal transplantation model. The induction of tolerogenic mechanisms in graft recipients was achieved by a significant upregulation of Tgfb, Foxp3, Il27, and Il10 in the transplant and an increase of regulatory dendritic cells (DCs), macrophages (Mφ), and T cells (Tregs) in eye-draining lymph nodes. The presence of sCD83 during in vitro DC and Mφ generation directed these cells toward a tolerogenic phenotype leading to reduced proliferation-stimulating activity in MLRs. Mechanistically, sCD83 induced a tolerogenic Mφ and DC phenotype, which favors Treg induction and significantly increased transplant survival after adoptive cell transfer. Conclusively, pre-incubation of corneal grafts with sCD83 significantly prolongs graft survival by modulating recipient Mφ and DCs toward tolerance and thereby establishing a tolerogenic microenvironment. This functional strategy of donor graft pre-treatment paves the way for new therapeutic options in the field of transplantation.


Subject(s)
Dendritic Cells , Graft Survival , Immune Tolerance , Macrophages , T-Lymphocytes, Regulatory
12.
J Immunol ; 205(10): 2595-2605, 2020 11 15.
Article in English | MEDLINE | ID: mdl-33020147

ABSTRACT

Siglec-15 is a conserved sialic acid-binding Ig-like lectin, which is expressed on osteoclasts. Deficiency of Siglec-15 leads to an impaired osteoclast development, resulting in a mild osteopetrotic phenotype. The role of Siglec-15 in arthritis is still largely unclear. To address this, we generated Siglec-15 knockout mice and analyzed them in a mouse arthritis model. We could show that Siglec-15 is directly involved in pathologic bone erosion in the K/BxN serum-transfer arthritis model. Histological analyses of joint destruction provided evidence for a significant reduction in bone erosion area and osteoclast numbers in Siglec-15-/- mice, whereas the inflammation area and cartilage destruction was comparable to wild-type mice. Thus, Siglec-15 on osteoclasts has a crucial function for bone erosion during arthritis. In addition, we generated a new monoclonal anti-Siglec-15 Ab to clarify its expression pattern on immune cells. Whereas this Ab demonstrated an almost exclusive Siglec-15 expression on murine osteoclasts and hardly any other expression on various other immune cell types, human Siglec-15 was more broadly expressed on human myeloid cells, including human osteoclasts. Taken together, our findings show a role of Siglec-15 as a regulator of pathologic bone resorption in arthritis and highlight its potential as a target for future therapies, as Siglec-15 blocking Abs are available.


Subject(s)
Arthritis, Rheumatoid/immunology , Bone Resorption/immunology , Immunoglobulins/metabolism , Membrane Proteins/metabolism , Osteoclasts/metabolism , Animals , Arthritis, Experimental/blood , Arthritis, Experimental/complications , Arthritis, Experimental/genetics , Arthritis, Experimental/immunology , Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/genetics , Bone Resorption/pathology , Bone and Bones/immunology , Bone and Bones/pathology , Cells, Cultured , Female , Humans , Immunoglobulins/genetics , Leukocytes, Mononuclear , Male , Membrane Proteins/genetics , Mice , Mice, Knockout , Osteoclasts/immunology , Primary Cell Culture
13.
Front Immunol ; 11: 721, 2020.
Article in English | MEDLINE | ID: mdl-32362900

ABSTRACT

The CD83 molecule has been identified to be expressed on numerous activated immune cells, including B and T lymphocytes, monocytes, dendritic cells, microglia, and neutrophils. Both isoforms of CD83, the membrane-bound as well as its soluble form are topic of intensive research investigations. Several studies revealed that CD83 is not a typical co-stimulatory molecule, but rather plays a critical role in controlling and resolving immune responses. Moreover, CD83 is an essential factor during the differentiation of T and B lymphocytes, and the development and maintenance of tolerance. The identification of its interaction partners as well as signaling pathways have been an enigma for the last decades. Here, we report the latest data on the expression, structure, and the signaling partners of CD83. In addition, we review the regulatory functions of CD83, including its striking modulatory potential to maintain the balance between tolerance versus inflammation during homeostasis or pathologies. These immunomodulatory properties of CD83 emphasize its exceptional therapeutic potential, which has been documented in specific preclinical disease models.


Subject(s)
Antigens, CD/genetics , Antigens, CD/metabolism , Immune Checkpoint Proteins/genetics , Immune Checkpoint Proteins/metabolism , Immunoglobulins/genetics , Immunoglobulins/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Adaptive Immunity , Animals , Antigens, CD/chemistry , Autoimmunity , B-Lymphocytes/immunology , Cell Differentiation/immunology , Dendritic Cells/immunology , Host Microbial Interactions/immunology , Humans , Immune Checkpoint Proteins/chemistry , Immune Tolerance , Immunoglobulins/chemistry , Membrane Glycoproteins/chemistry , Mice , T-Lymphocytes, Regulatory/immunology , CD83 Antigen
14.
Front Immunol ; 10: 633, 2019.
Article in English | MEDLINE | ID: mdl-31001257

ABSTRACT

Interference with autoimmune-mediated cytokine production is a key yet poorly developed approach to treat autoimmune and inflammatory diseases such as rheumatoid arthritis. Herein, we show that soluble CD83 (sCD83) enhances the resolution of autoimmune antigen-induced arthritis (AIA) by strongly reducing the expression levels of cytokines such as IL-17A, IFNγ, IL-6, and TNFα within the joints. Noteworthy, also the expression of RANKL, osteoclast differentiation, and joint destruction was significantly inhibited by sCD83. In addition, osteoclasts which were cultured in the presence of synovial T cells, derived from sCD83 treated AIA mice, showed a strongly reduced number of multinuclear large osteoclasts compared to mock controls. Enhanced resolution of arthritis by sCD83 was mechanistically based on IDO, since inhibition of IDO by 1-methyltryptophan completely abrogated sCD83 effects on AIA. Blocking experiments, using anti-TGF-ß antibodies further revealed that also TGF-ß is mechanistically involved in the sCD83 induced reduction of bone destruction and cartilage damage as well as enhanced resolution of inflammation. Resolution of arthritis was associated with increased numbers of regulatory T cells, which are induced in a sCD83-IDO-TGF-ß dependent manner. Taken together, sCD83 represents an interesting approach for downregulating cytokine production, inducing regulatory T cells and inducing resolution of autoimmune arthritis.


Subject(s)
Antigens, CD/immunology , Arthritis, Experimental/immunology , Immunoglobulins/immunology , Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology , Membrane Glycoproteins/immunology , Signal Transduction/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Antibodies, Blocking/pharmacology , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Cytokines/immunology , Female , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Inflammation/drug therapy , Inflammation/immunology , Inflammation/pathology , Joints/immunology , Joints/pathology , Mice , Signal Transduction/drug effects , Solubility , T-Lymphocytes, Regulatory/pathology , Transforming Growth Factor beta/antagonists & inhibitors , Transforming Growth Factor beta/immunology , Tryptophan/analogs & derivatives , Tryptophan/pharmacology , CD83 Antigen
SELECTION OF CITATIONS
SEARCH DETAIL
...