Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 12: 736245, 2021.
Article in English | MEDLINE | ID: mdl-35095543

ABSTRACT

Background: Inflammation is one of the mechanisms involved in heart failure (HF) pathophysiology. Thus, the acute phase reactant protein, orosomucoid, was associated with a worse post-discharge prognosis in de novo acute HF (AHF). However, the presence of anti-inflammatory adipokine, omentin, might protect and reduce the severity of the disease. We wanted to evaluate the value of omentin and orosomucoid combination for stratifying the risk of these patients. Methods and Results: Two independent cohorts of patients admitted for de novo AHF in two centers were included in the study (n = 218). Orosomucoid and omentin circulating levels were determined by ELISA at discharge. Patients were followed-up for 317 (3-575) days. A predictive model was determined for the primary endpoint, death, and/or HF readmission. Differences in survival were evaluated using a Log-rank test. According to cut-off values of orosomucoid and omentin, patients were classified as UpDown (high orosomucoid and low omentin levels), equal (both proteins high or low), and DownUp (low orosomucoid and high omentin levels). The Kaplan Meier determined a worse prognosis for the UpDown group (Long-rank test p = 0.02). The predictive model that includes the combination of orosomucoid and omentin groups (OROME) + NT-proBNP values achieved a higher C-index = 0.84 than the predictive model with NT-proBNP (C-index = 0.80) or OROME (C-index = 0.79) or orosomucoid alone (C-index = 0.80). Conclusion: The orosomucoid and omentin determination stratifies de novo AHF patients into the high, mild, and low risk of rehospitalization and/or death for HF. Its combination with NT-proBNP improves its predictive value in this group of patients.

2.
J Cell Mol Med ; 24(18): 10958-10969, 2020 09.
Article in English | MEDLINE | ID: mdl-32767737

ABSTRACT

The modulation of acetylcholine (ACh) release by botulinum toxin injection into epicardial fat diminishes atrial fibrillation (AF) recurrence. These results suggest an interaction between autonomic imbalance and epicardial fat as risk factors of AF. Our aim was to study the inflammatory, lipidic and fibroblastic profile of epicardial stroma from patients who underwent open-heart surgery, their regulation by cholinergic activity and its association with AF. We performed in vitro and ex vivo assays from paired subcutaneous and epicardial stromal cells or explants from 33 patients. Acute ACh effects in inflammation and lipid-related genes were analysed by qPCR, in intracellular calcium mobilization were performed by Fluo-4 AM staining and in neutrophil migration by trans-well assays. Chronic ACh effects on lipid accumulation were visualized by AdipoRed. Plasma protein regulation by parasympathetic denervation was studied in vagotomized rats. Our results showed a higher pro-inflammatory profile in epicardial regarding subcutaneous stromal cells. Acute ACh treatment up-regulated monocyte chemoattractant protein 1 levels. Chronic ACh treatment improved lipid accumulation within epicardial stromal cells (60.50% [22.82-85.13] vs 13.85% [6.17-23.16], P < .001). Additionally, patients with AF had higher levels of fatty acid-binding protein 4 (1.54 ± 0.01 vs 1.47 ± 0.01, P = .005). Its plasma levels were pronouncedly declined in vagotomized rats (2.02 ± 0.21 ng/mL vs 0.65 ± 0.23 ng/mL, P < .001). Our findings support the characterization of acute or chronic cholinergic activity on epicardial stroma and its association with AF.


Subject(s)
Acetylcholine/metabolism , Atrial Fibrillation/metabolism , Lipid Metabolism , Pericardium/pathology , Stromal Cells/metabolism , Acetylcholine/pharmacology , Adipocytes/drug effects , Adipocytes/metabolism , Adipose Tissue/metabolism , Aged , Animals , Atrial Fibrillation/etiology , Calcium Signaling , Cardiac Surgical Procedures , Cells, Cultured , Chemokine CCL2/biosynthesis , Chemokine CCL2/genetics , Chemotaxis, Leukocyte/drug effects , Fatty Acid-Binding Proteins , Gene Expression Profiling , HL-60 Cells , Humans , Inflammation , Metabolic Syndrome/metabolism , Middle Aged , Neutrophils/drug effects , Obesity/complications , Obesity/physiopathology , Parasympathetic Nervous System/physiopathology , Rats , Rats, Sprague-Dawley , Stromal Cells/drug effects , Subcutaneous Fat/metabolism , Vagotomy
3.
Front Physiol ; 11: 620, 2020.
Article in English | MEDLINE | ID: mdl-32695009

ABSTRACT

OBJECTIVES: Neurohormonal dysfunction, which can regulate epicardial fat activity, is one of the main promoters of atrial fibrillation (AF) in patients with heart failure (HF). Our aim was to study the epicardial fat mediators for AF in patients with HF and its catecholaminergic regulation. METHODS: We have included 29 patients with HF who underwent cardiac surgery and were followed up for 5 years. Released proteins by epicardial adipose tissue (EAT) after isoproterenol treatment were identified by nano-high-performance liquid chromatography (HPLC) and triple time-of-flight (TOF) analysis. Common and differential identified proteins in groups of patients with AF before and after surgery were determined by the FunRich tool. Plasma and epicardial fat biopsy proteins were quantified by western blot. RESULTS: Our results identified 17 common released proteins by EAT, after isoproterenol treatment, from HF patients who suffered AF or developed new-onset AF during follow-up. Mostly, they were involved on inflammatory response and extracellular matrix. One of them was CD5L, a macrophage apoptosis inhibitor. Its secretion by isoproterenol treatment was validated on western blot. The CD5L levels on epicardial fat were also higher in the group of male patients who present or develop AF (0.44 ± 0.05 vs. 0.18 ± 0.15; p < 0.016). However, there were no differences regarding plasma levels. CONCLUSION: Our results suggest the role of epicardial fat CD5L as a mediator of AF and its possible paracrine effect by catecholaminergic activity.

4.
Atherosclerosis ; 292: 60-69, 2020 01.
Article in English | MEDLINE | ID: mdl-31783199

ABSTRACT

BACKGROUND AND AIMS: Dapagliflozin, a sodium-glucose co-transporter 2 inhibitor, improves glucose uptake by epicardial adipose tissue (EAT). However, its metabolism might raise the lactate production and acidosis under hypoxia conditions, i.e. coronary artery disease (CAD), or lipogenesis and, in consequence, expand adipose tissue. Since lactate secreted by adipose tissue is correlated with tissue stress and inflammation, our aim was to study glucose metabolism by epicardial fat in CAD and its regulation by dapagliflozin. METHODS: Paired EAT and subcutaneous adipose tissue (SAT) biopsies from 49 patients who underwent open-heart surgery were cultured and split into three equal pieces, some treated with and others without dapagliflozin at 10 or 100 µM for 6 h. Anaerobic glucose metabolites were measured in supernatants of fat pads, and acidosis on adipogenesis-induced primary culture cells was analysed by colorimetric or fluorescence assays. Gene expression levels were assessed by real-time polymerase chain reaction. RESULTS: Our results showed that dapagliflozin reduced the released lactate and acidosis in epicardial fat (p < 0.05) without changes in lipid storage-involved genes. In addition, this drug induced gene expression levels of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α), a mitochondrial biogenesis-involved gene in both EAT and SAT (p < 0.05). After splitting the population regarding the presence of CAD, we observed higher lactate production in EAT from these patients (2.46 [1.75-3.47] mM), which was reduced after treatment with dapagliflozin 100 µM (1.99 [1.08-2.99] mM, p < 0.01). CONCLUSIONS: Dapagliflozin improved glucose metabolism without lipogenesis-involved gene regulation or lactate production, mainly in patients with CAD. These results suggest an improvement of glucose oxidation metabolism that can contribute to cardiovascular benefits.


Subject(s)
Adipose Tissue/drug effects , Adipose Tissue/metabolism , Benzhydryl Compounds/pharmacology , Coronary Artery Disease/metabolism , Glucose/metabolism , Glucosides/pharmacology , Lactic Acid/metabolism , Pericardium/drug effects , Pericardium/metabolism , Sodium-Glucose Transport Proteins/pharmacology , Humans
5.
Biomed Pharmacother ; 113: 108763, 2019 May.
Article in English | MEDLINE | ID: mdl-30875658

ABSTRACT

OBJECTIVES: Characterization of the type of glycation found in circulating proteins from cardiovascular patients in comparison with healthy control subjects and to explore the pathophysiological molecular effects of these glycomodified proteins on human umbilical vein endothelial cells (HUVEC) in culture. METHODS: Human serum albumin pools from 10 subjects each, of patients with heart failure (HF) presenting high or low glycation levels, and from healthy subjects were isolated and purified. The glycation levels of these pools were characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and compared between them. Analysis of endothelial dysfunction after the treatment of HUVEC with the pools was made by mRNA expression of adhesion molecules and by functional adhesion of mononuclear cells to HUVEC monolayers. RESULTS: Specific characterization of post-transductional modifications (advanced glycation end products) in high and low glycated albumins from patients was made in comparison with healthy subjects. Albumins from patients were able, at very low concentrations (12.5 µg/mL), to significantly up-regulate (˜0.2 - 2 fold) the gene expression of adhesion molecules in HUVEC. At the functional level, the albumin from patients with high glycation levels (at 12.5 and 25 µg/mL) significantly enhanced (˜10%) the adhesion of mononuclear cells to HUVEC. CONCLUSIONS: Differences in the glycomodification of albumin from HF patients were found and specifically characterized in comparison with albumin from healthy subjects. Functionally, in vivo glycated albumin in patients with HF induced an increase in adhesion molecules expression on HUVEC, which supported an increase in peripheral blood mononuclear cells adhesion to endothelial cells.


Subject(s)
Glycation End Products, Advanced/metabolism , Heart Failure/physiopathology , Inflammation/pathology , Serum Albumin/metabolism , Cell Adhesion , Cell Adhesion Molecules/metabolism , Heart Failure/blood , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Leukocytes, Mononuclear/metabolism , Middle Aged , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Up-Regulation , Young Adult , Glycated Serum Albumin
SELECTION OF CITATIONS
SEARCH DETAIL
...