Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurotox Res ; 31(1): 31-45, 2017 01.
Article in English | MEDLINE | ID: mdl-27568334

ABSTRACT

Glutamate excitotoxicity plays a major role in the loss of retinal ganglion cells (RGCs) in glaucoma. The toxic effects of glutamate on RGCs are mediated by the overstimulation of N-methyl-D-aspartate (NMDA) receptors. Accordingly, NMDA receptor antagonists have been suggested to inhibit excitotoxicity in RGCs and delay the progression and visual loss in glaucoma patients. The purpose of the present study was to examine the potential neuroprotective effect of Mg acetyltaurate (MgAT) on RGC death induced by NMDA. MgAT was proposed mainly due to the combination of magnesium (Mg) and taurine which may provide neuroprotection by dual mechanisms of action, i.e., inhibition of NMDA receptors and antioxidant effects. Rats were divided into 5 groups and were given intravitreal injections. Group 1 (PBS group) was injected with vehicle; group 2 (NMDA group) was injected with NMDA while groups 3 (pre-), 4 (co-), and 5 (post-) treatments were injected with MgAT, 24 h before, in combination or 24 h after NMDA injection respectively. NMDA and MgAT were injected in PBS at doses 160 and 320 nmol, respectively. Seven days after intravitreal injection, the histological changes in the retina were evaluated using hematoxylin & eosin (H&E) staining. Optic nerves were dissected and stained in Toluidine blue for grading on morphological neurodegenerative changes. The extent of apoptosis in retinal tissue was assessed by TUNEL assay and caspase-3 immunohistochemistry staining. The estimation of neurotrophic factor, oxidative stress, pro/anti-apoptotic factors and caspase-3 activity in retina was done using enzyme-linked immunosorbent assay (ELISA) technique. The retinal morphometry showed reduced thickness of ganglion cell layer (GCL) and reduction in the number of retinal cells in GCL in NMDA group compared to the MgAT-treated groups. TUNEL and caspase-3 staining showed increased number of apoptotic cells in inner retina. The results were further corroborated by the estimation of neurotrophic factor, oxidative stress, pro/anti-apoptotic factors, and caspase-3 activity in retina. In conclusion, current study revealed that intravitreal MgAT prevents retinal and optic nerve damage induced by NMDA. Overall, our data demonstrated that the pretreatment with MgAT was more effective than co- and posttreatment. This protective effect of MgAT against NMDA-induced retinal cell apoptosis could be attributed to the reduction of retinal oxidative stress and activation of BDNF-related neuroprotective mechanisms.


Subject(s)
N-Methylaspartate/toxicity , Neuroprotective Agents/pharmacology , Retinal Ganglion Cells/drug effects , Taurine/analogs & derivatives , Animals , Apoptosis/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Drug Evaluation, Preclinical , Excitatory Amino Acid Agonists/toxicity , Female , Intravitreal Injections , Male , Optic Nerve/drug effects , Optic Nerve/metabolism , Optic Nerve/pathology , Oxidative Stress/drug effects , Oxidative Stress/physiology , Random Allocation , Rats, Sprague-Dawley , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/pathology , Taurine/pharmacology , Time Factors
2.
Mol Vis ; 22: 734-47, 2016.
Article in English | MEDLINE | ID: mdl-27440992

ABSTRACT

PURPOSE: Increased lenticular oxidative stress and altered calcium/magnesium (Ca/Mg) homeostasis underlie cataractogenesis. We developed a liposomal formulation of magnesium taurate (MgT) and studied its effects on Ca/Mg homeostasis and lenticular oxidative and nitrosative stress in galactose-fed rats. METHODS: The galactose-fed rats were topically treated with liposomal MgT (LMgT), liposomal taurine (LTau), or corresponding vehicles twice daily for 28 days with weekly anterior segment imaging. At the end of the experimental period, the lenses were removed and subjected to analysis for oxidative and nitrosative stress, Ca and Mg levels, ATP content, Ca(2+)-ATPase, Na(+),K(+)-ATPase, and calpain II activities. RESULTS: The LTau and LMgT groups showed significantly lower opacity index values at all time points compared to the corresponding vehicle groups (p<0.001). However, the opacity index in the LMgT group was lower than that in the LTau group (p<0.05). Significantly reduced oxidative and nitrosative stress was observed in the LTau and LMgT groups. The lens Ca/Mg ratio in LMgT group was decreased by 1.15 times compared to that in the LVh group. Calpain II activity in the LMgT group was decreased by 13% compared to the LVh group. The ATP level and Na(+),K(+)-ATPase and Ca(2+)-ATPase activities were significantly increased in the LMgT group compared to the LVh group (p<0.05). CONCLUSIONS: Topical liposomal MgT delays cataractogenesis in galactose-fed rats by maintaining the lens mineral homeostasis and reducing lenticular oxidative and nitrosative stress.


Subject(s)
Cataract/drug therapy , Taurine/administration & dosage , Taurine/therapeutic use , Animals , Calcium/metabolism , Calpain/metabolism , Cataract/metabolism , Cataract/pathology , Disease Progression , Galactose , Homeostasis , Lens, Crystalline/drug effects , Lens, Crystalline/metabolism , Liposomes , Magnesium/metabolism , Nitrosation , Oxidative Stress/drug effects , Particle Size , Rats, Sprague-Dawley , Sodium-Potassium-Exchanging ATPase/metabolism , Taurine/chemistry , Taurine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...