Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nanotechnology ; 32(47)2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34388742

ABSTRACT

Different Ti substrates, such as particles (as-received and ball milled), plate and TEM grid were oxidized for the growth of one dimensional (1D) TiO2nanostructures. The Ti substrates were oxidized for 4 h at temperatures of 700 °C-750 °C in humid and dry Ar containing 5 ppm of O2. The effects of residual stress on the growth of 1D TiO2nanostructures were investigated. The residual stress inside the Ti particles was measured by XRD-sin2ψtechnique. The oxidized Ti substrates were characterized using field emission scanning electron microscope equipped with energy dispersive x-ray spectroscope, transmission electron microscope, x-ray diffractometer and x-ray photoelectron spectroscope. Results revealed that humid environment enhances the growth of 1D TiO2nanostructures. Four different types of 1D morphologies obtained during humid oxidation, e.g. stacked, ribbon, plateau and lamp-post shaped nanostructures. The presence of residual stress significantly enhances the density and coverage of 1D nanostructures. The as-grown TiO2nanostructures possess tetragonal rutile structure having length up to 10µm along the 〈1 0 1〉 directions. During initial stage of oxidation, a TiO2layer is formed on Ti substrate. Lower valence oxides (Ti3O5, Ti2O3and TiO) then form underneath the TiO2layer and induce stress at the interface of oxide layers. The induced stress plays significant role on the growth of 1D TiO2nanostructures. The induced stress is relaxed by creating new surfaces in the form of 1D TiO2nanostructures. A diffusion based model is proposed to explain the mechanism of 1D TiO2growth during humid oxidation of Ti. The 1D TiO2nanostructures and TiO2layer is formed by the interstitial diffusion of Ti4+ions to the surface and reacts with the surface adsorbed hydroxide ions (OH-). Lower valence oxides are formed at the metal-oxide interface by the reaction between diffused oxygen ions and Ti ions.

2.
Nanotechnology ; 31(17): 175603, 2020 Apr 24.
Article in English | MEDLINE | ID: mdl-31918416

ABSTRACT

In this research work, nanowires were grown on brass (Cu - 37.2 wt% Zn) substrate by thermal oxidation. The substrate was oxidized at temperatures ranging from 350 °C to 600 °C in the presence of varying concentrations of O2 (1%-100%) in N2 flown at a rate of 200 sccm. The oxidized brass surface was characterized by field emission scanning electron microscope equipped with energy dispersive x-ray spectroscope and transmission electron microscope. Four different types of morphological variations such as thin, thick with branches, circular-flake and flat-cone shape nanostructures were observed during oxidation at different conditions. However, the prevalence of thin and thick morphology with branches was more prominent and found in all growth conditions. The length and diameter of the nanowires varied from 1 to 30 µm and 50 to 500 nm, respectively, whereas the length of the branches varied from 1 to 3 µm. The composition of the nanowires was ZnO possessing of hexagonal wurtzite structure. The selected area diffraction confirms that the nanowires grew along 〈1 1 [Formula: see text] 0〉 directions. Based on the results, a stress induced mechanism is proposed for the growth of ZnO nanowires on Cu - 37.2 wt% Zn substrate.

SELECTION OF CITATIONS
SEARCH DETAIL
...