Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 12(12)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38136230

ABSTRACT

Lipofuscin accumulates with age as intracellular fluorescent granules originating from incomplete lysosomal digestion of phagocytosed and autophagocytosed material. The purpose of this review is to provide an update on the current understanding of the role of oxidative stress and/or lysosomal dysfunction in lipofuscin accumulation and its consequences, particularly for retinal pigment epithelium (RPE). Next, the fluorescence of lipofuscin, spectral changes induced by oxidation, and its contribution to retinal fluorescence are discussed. This is followed by reviewing recent developments in fluorescence imaging of the retina and the current evidence on the prognostic value of retinal fluorescence for the progression of age-related macular degeneration (AMD), the major blinding disease affecting elderly people in developed countries. The evidence of lipofuscin oxidation in vivo and the evidence of increased oxidative damage in AMD retina ex vivo lead to the conclusion that imaging of spectral characteristics of lipofuscin fluorescence may serve as a useful biomarker of oxidative damage, which can be helpful in assessing the efficacy of potential antioxidant therapies in retinal degenerations associated with accumulation of lipofuscin and increased oxidative stress. Finally, amendments to currently used fluorescence imaging instruments are suggested to be more sensitive and specific for imaging spectral characteristics of lipofuscin fluorescence.

2.
Antioxidants (Basel) ; 11(6)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35740030

ABSTRACT

Vitamins C and E and zeaxanthin are components of a supplement tested in a large clinical trial-Age-Related Eye Disease Study 2 (AREDS2)-and it has been demonstrated that they can inhibit the progression of age-related macular degeneration. The aim of this study was to determine the optimal combinations of these antioxidants to prevent the phototoxicity mediated by vitamin A aldehyde (ATR), which can accumulate in photoreceptor outer segments (POS) upon exposure to light. We used cultured retinal pigment epithelial cells ARPE-19 and liposomes containing unsaturated lipids and ATR as a model of POS. Cells and/or liposomes were enriched with lipophilic antioxidants, whereas ascorbate was added just before the exposure to light. Supplementing the cells and/or liposomes with single lipophilic antioxidants had only a minor effect on phototoxicity, but the protection substantially increased in the presence of both ways of supplementation. Combinations of zeaxanthin with α-tocopherol in liposomes and cells provided substantial protection, enhancing cell viability from ~26% in the absence of antioxidants to ~63% in the presence of 4 µM zeaxanthin and 80 µM α-tocopherol, and this protective effect was further increased to ~69% in the presence of 0.5 mM ascorbate. The protective effect of ascorbate disappeared at a concentration of 1 mM, whereas 2 mM of ascorbate exacerbated the phototoxicity. Zeaxanthin or α-tocopherol partly ameliorated the cytotoxic effects. Altogether, our results suggest that the optimal combination includes upper levels of zeaxanthin and α-tocopherol achievable by diet and/or supplementations, whereas ascorbate needs to be at a four-fold smaller concentration than that in the vitreous. The physiological relevance of the results is discussed.

3.
Int J Mol Sci ; 23(2)2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35055111

ABSTRACT

Retinal lipofuscin accumulates with age in the retinal pigment epithelium (RPE), where its fluorescence properties are used to assess retinal health. It was observed that there is a decrease in lipofuscin fluorescence above the age of 75 years and in the early stages of age-related macular degeneration (AMD). The purpose of this study was to investigate the response of lipofuscin isolated from human RPE and lipofuscin-laden cells to visible light, and to determine whether an abundant component of lipofuscin, docosahexaenoate (DHA), can contribute to lipofuscin fluorescence upon oxidation. Exposure of lipofuscin to visible light leads to a decrease in its long-wavelength fluorescence at about 610 nm, with a concomitant increase in the short-wavelength fluorescence. The emission spectrum of photodegraded lipofuscin exhibits similarity with that of oxidized DHA. Exposure of lipofuscin-laden cells to light leads to a loss of lipofuscin granules from cells, while retaining cell viability. The spectral changes in fluorescence in lipofuscin-laden cells resemble those seen during photodegradation of isolated lipofuscin. Our results demonstrate that fluorescence emission spectra, together with quantitation of the intensity of long-wavelength fluorescence, can serve as a marker useful for lipofuscin quantification and for monitoring its oxidation, and hence useful for screening the retina for increased oxidative damage and early AMD-related changes.


Subject(s)
Docosahexaenoic Acids/chemistry , Lipofuscin/chemistry , Retinal Pigment Epithelium/cytology , Cell Line , Cell Survival , Endocytosis , Humans , Light , Microscopy, Fluorescence , Oxidation-Reduction , Photolysis , Retinal Pigment Epithelium/chemistry
4.
Antioxidants (Basel) ; 10(5)2021 May 10.
Article in English | MEDLINE | ID: mdl-34068492

ABSTRACT

Dehydrolutein accumulates in substantial concentrations in the retina. The aim of this study was to compare antioxidant properties of dehydrolutein with other retinal carotenoids, lutein, and zeaxanthin, and their effects on ARPE-19 cells. The time-resolved detection of characteristic singlet oxygen phosphorescence was used to compare the singlet oxygen quenching rate constants of dehydrolutein, lutein, and zeaxanthin. The effects of these carotenoids on photosensitized oxidation were tested in liposomes, where photo-oxidation was induced by light in the presence of photosensitizers, and monitored by oximetry. To compare the uptake of dehydrolutein, lutein, and zeaxanthin, ARPE-19 cells were incubated with carotenoids for up to 19 days, and carotenoid contents were determined by spectrophotometry in cell extracts. To investigate the effects of carotenoids on photocytotoxicity, cells were exposed to light in the presence of rose bengal or all-trans-retinal. The results demonstrate that the rate constants for singlet oxygen quenching are 0.77 × 1010, 0.55 × 1010, and 1.23 × 1010 M-1s-1 for dehydrolutein, lutein, and zeaxanthin, respectively. Overall, dehydrolutein is similar to lutein or zeaxanthin in the protection of lipids against photosensitized oxidation. ARPE-19 cells accumulate substantial amounts of both zeaxanthin and lutein, but no detectable amounts of dehydrolutein. Cells pre-incubated with carotenoids are equally susceptible to photosensitized damage as cells without carotenoids. Carotenoids provided to cells together with the extracellular photosensitizers offer partial protection against photodamage. In conclusion, the antioxidant properties of dehydrolutein are similar to lutein and zeaxanthin. The mechanism responsible for its lack of accumulation in ARPE-19 cells deserves further investigation.

5.
Int J Mol Sci ; 22(7)2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33805370

ABSTRACT

Retinal lipofuscin which accumulates with age in the retinal pigment epithelium (RPE) is subjected to daily exposures to high fluxes of visible light and exhibits potent photosensitising properties; however, the molecules responsible for its photoreactivity remain unknown. Here, we demonstrate that autooxidation of docosahexaenoate (DHE) leads to the formation of products absorbing, in addition to UVB and UVA light, also visible light. The products of DHE oxidation exhibit potent photosensitising properties similar to photosensitising properties of lipofuscin, including generation of an excited triplet state with similar characteristics as the lipofuscin triplet state, and photosensitised formation of singlet oxygen and superoxide. The quantum yields of singlet oxygen and superoxide generation by oxidised DHE photoexcited with visible light are 2.4- and 3.6-fold higher, respectively, than for lipofuscin, which is consistent with the fact that lipofuscin contains some chromophores which do contribute to the absorption of light but not so much to its photosensitising properties. Importantly, the wavelength dependence of photooxidation induced by DHE oxidation products normalised to equal numbers of incident photons is also similar to that of lipofuscin-it steeply increases with decreasing wavelength. Altogether, our results demonstrate that products of DHE oxidation include potent photosensitiser(s) which are likely to contribute to lipofuscin photoreactivity.


Subject(s)
Docosahexaenoic Acids/chemistry , Light , Lipofuscin/chemistry , Retina/metabolism , Humans , Oxidation-Reduction , Photochemical Processes , Singlet Oxygen/chemistry , Superoxides/chemistry
6.
PLoS One ; 12(2): e0172635, 2017.
Article in English | MEDLINE | ID: mdl-28235055

ABSTRACT

PURPOSE: Current standards and guidelines aimed at preventing retinal phototoxicity during intentional exposures do not specifically evaluate the contribution of endogenous photosensitizers. However, certain retinal diseases are characterized by abnormal accumulations of potential photosensitizers such as lipofuscin bisretinoids in the retinal pigment epithelium (RPE). We sought to determine these contributions by a numerical assessment of in-vivo photo-oxidative stress during irradiation of RPE lipofuscin. METHODS: Based on the literature, we calculated the retinal exposure levels, optical filtering of incident radiation by the ocular lens, media, photoreceptors, and RPE melanin, light absorption by lipofuscin, and photochemical effects in the RPE in two situations: exposure to short-wavelength (λ = 488 nm) fundus autofluorescence (SW-AF) excitation light and exposure to indirect (diffuse) sunlight. RESULTS: In healthy persons at age 20, 40, and 60, respectively, the rate of oxygen photoconsumption by lipofuscin increases by 1.3, 1.7, and 2.4 fold during SW-AF-imaging as compared to diffuse sunlight. In patients with STGD1 below the age of 30, this rate was 3.3-fold higher compared to age-matched controls during either sunlight or SW-AF imaging. CONCLUSIONS: Our results suggest that the RPE of patients with STGD1 is generally at increased risk of photo-oxidative stress, while exposure during SW-AF-imaging amplifies this risk. These theoretical results have not yet been verified with in-vivo data due to a lack of sufficiently sensitive in-vivo measurement techniques.


Subject(s)
Lipofuscin/metabolism , Macular Degeneration/congenital , Optical Imaging/adverse effects , Photoreceptor Cells, Vertebrate/radiation effects , Photosensitizing Agents/metabolism , Retinal Pigment Epithelium/radiation effects , Adult , Female , Fluorescein Angiography/adverse effects , Fundus Oculi , Humans , Macular Degeneration/diagnostic imaging , Macular Degeneration/metabolism , Macular Degeneration/pathology , Male , Melanins/metabolism , Middle Aged , Oxidative Stress/radiation effects , Photochemical Processes , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/pathology , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Stargardt Disease , Sunlight , Tomography, Optical Coherence/adverse effects
7.
Photochem Photobiol ; 88(6): 1303-8, 2012.
Article in English | MEDLINE | ID: mdl-23106541

ABSTRACT

Light-induced injury to the retina resembles many features of several retinal degenerative diseases, particularly age-related macular degeneration. This Symposium-in-Print on Retinal Photodamage discusses the mechanisms involved and protective strategies to increase the retinal resistance to damage and/or to counteract its deleterious effects. Recent results help explaining the wavelength dependence of susceptibility of the retina to photodamage and different sites of the initial injury for shorter- and longer-wavelength light. Still, there are many unanswered questions pointing toward next directions in research so as to increase the understanding of the responses of the retina to photodamage and help to develop effective therapeutic approaches for retinal degenerations.


Subject(s)
Light/adverse effects , Retina/radiation effects , Retinal Degeneration/etiology , Animals , Eye/radiation effects , Humans , Lipofuscin/metabolism , Ocular Physiological Phenomena , Retina/metabolism , Retinal Degeneration/metabolism , Retinaldehyde , Rhodopsin/metabolism
8.
Mol Cell Proteomics ; 7(7): 1397-405, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18436525

ABSTRACT

Lipofuscin accumulates with age in the retinal pigment epithelium (RPE) in discrete granular organelles and may contribute to age-related macular degeneration. Because previous studies suggest that lipofuscin contains protein that may impact pathogenic mechanisms, we pursued proteomics analysis of lipofuscin. The composition of RPE lipofuscin and its mechanisms of pathogenesis are poorly understood in part because of the heterogeneity of isolated preparations. We purified RPE lipofuscin granules by treatment with proteinase K or SDS and showed by light, confocal, and transmission electron microscopy that the purified granules are free of extragranular material and associated membranes. Crude and purified lipofuscin preparations were quantitatively compared by (i) LC MS/MS proteomics analyses, (ii) immunoanalyses of oxidative protein modifications, (iii) amino acid analysis, (iv) HPLC of bisretinoids, and (v) assaying phototoxicity to RPE cells. From crude lipofuscin preparations 186 proteins were identified, many of which appeared to be modified. In contrast, very little protein ( approximately 2% (w/w) by amino acid analysis) and no identifiable protein were found in the purified granules, which retained full phototoxicity to cultured RPE cells. Our analyses showed that granules in purified and crude lipofuscin preparations exhibit no statistically significant differences in diameter or circularity or in the content of the bisretinoids A2E, isoA2E, and all-trans-retinal dimer-phosphatidylethanolamine. The finding that the purified granules contain minimal protein yet retain phototoxic activity suggests that RPE lipofuscin pathogenesis is largely independent of associated protein. The purified granules also exhibited oxidative protein modifications, including nitrotyrosine generated from reactive nitrogen oxide species and carboxyethylpyrrole and iso[4]levuglandin E(2) adducts generated from reactive lipid fragments. This finding is consistent with previous studies demonstrating RPE lipofuscin to be a potent generator of reactive oxygen species and supports the hypothesis that such species, including reactive fragments from lipids and retinoids, contribute to the mechanisms of RPE lipofuscin pathogenesis.


Subject(s)
Lipofuscin/analysis , Pigment Epithelium of Eye/chemistry , Proteomics/methods , Aged , Amino Acid Sequence , Cell Survival/radiation effects , Eye Proteins/analysis , Eye Proteins/metabolism , Humans , Light/adverse effects , Lipofuscin/isolation & purification , Lipofuscin/radiation effects , Oxidation-Reduction , Pigment Epithelium of Eye/ultrastructure , Protein Processing, Post-Translational , Retinoids/analysis
9.
Pigment Cell Res ; 20(1): 52-60, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17250548

ABSTRACT

Melanin in the human retinal pigment epithelium (RPE) is believed to play an important photoprotective role. However, unlike in skin, melanosomes in the RPE are rather long-lived organelles, which increases their risk of modifications resulting from significant fluxes of light and high oxygen tension. In this work, we subjected purified bovine RPE melanosomes to prolonged aerobic exposure with intense visible and near ultraviolet radiation and studied the effects of irradiation on the melanosome's capacity to inhibit peroxidation of lipids induced by iron/ascorbate. We found that control, untreated melanosomes show a concentration-dependent inhibition of the accumulation of lipid hydroperoxides and the accompanying consumption of oxygen, but photolysed melanosomes lose their antioxidant efficiency and even became prooxidant. The prooxidant action of partially photobleached melanosomes was observed for pigment granules with a melanin content reduced by about 50% compared with untreated melanosomes, as determined by electron spin resonance spectroscopy. We have previously shown that a similar loss in the content of the RPE melanin occurs during human lifetime, which may suggest that the normal antioxidant properties of human RPE melanin become compromised with aging.


Subject(s)
Iron/pharmacology , Lipid Peroxidation/drug effects , Melanosomes/metabolism , Melanosomes/radiation effects , Photobleaching , Pigment Epithelium of Eye/metabolism , Pigment Epithelium of Eye/radiation effects , Albumins/pharmacology , Animals , Ascorbic Acid/pharmacology , Catalase/pharmacology , Cattle , Deferoxamine/pharmacology , Lipid Peroxidation/radiation effects , Lipid Peroxides/metabolism , Melanins/analysis , Melanosomes/drug effects , Oxygen Consumption/drug effects , Oxygen Consumption/radiation effects , Pigment Epithelium of Eye/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...