Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 186(12): 8981-95, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25236957

ABSTRACT

Large nutrient losses to groundwater and surface waters are a major drawback of the highly productive agricultural sector in The Netherlands. The resulting high nutrient concentrations in water resources threaten their ecological, industrial, and recreational functions. To mitigate eutrophication problems, legislation on nutrient application in agriculture was enforced in 1986 in The Netherlands. The objective of this study was to evaluate this manure policy by assessing the water quality status and trends in agriculture-dominated headwaters. We used datasets from 5 agricultural test catchments and from 167 existing monitoring locations in agricultural headwaters. Trend analysis for these locations showed a fast reduction of nutrient concentrations after the enforcement of the manure legislation (median slopes of -0.55 mg/l per decade for total nitrogen (N-tot) and -0.020 mg/l per decade for total phosphorus (P-tot)). Still, up to 76 % of the selected locations currently do not comply with either the environmental quality standards (EQSs) for nitrogen (N-tot) or phosphorus (P-tot). This indicates that further improvement of agricultural water quality is needed. We observed that weather-related variations in nutrient concentrations strongly influence the compliance testing results, both for individual locations and for the aggregated results at the national scale. Another important finding is that testing compliance for nutrients based on summer average concentrations may underestimate the agricultural impact on ecosystem health. The focus on summer concentrations does not account for the environmental impact of high winter loads from agricultural headwaters towards downstream water bodies.


Subject(s)
Agriculture/legislation & jurisprudence , Environmental Monitoring/methods , Manure , Agriculture/methods , Ecosystem , Environment , Eutrophication , Netherlands , Nitrogen/analysis , Phosphorus/analysis , Seasons , Water Quality/standards
2.
Environ Pollut ; 158(12): 3571-9, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20869143

ABSTRACT

Enhanced knowledge of water and solute pathways in catchments would improve the understanding of dynamics in water quality and would support the selection of appropriate water pollution mitigation options. For this study, we physically separated tile drain effluent and groundwater discharge from an agricultural field before it entered a 43.5-m ditch transect. Through continuous discharge measurements and weekly water quality sampling, we directly quantified the flow route contributions to surface water discharge and solute loading. Our multi-scale experimental approach allowed us to relate these measurements to field-scale NO(3) concentration patterns in shallow groundwater and to continuous NO(3) records at the catchment outlet. Our results show that the tile drains contributed 90-92% of the annual NO(3) and heavy metal loads. Considering their crucial role in water and solute transport, enhanced monitoring and modeling of tile drainage are important for adequate water quality management.


Subject(s)
Environmental Monitoring/methods , Water Movements , Water Pollution , Metals, Heavy/metabolism , Nitrates/metabolism , Water Pollutants, Chemical , Water Supply
3.
Environ Pollut ; 148(3): 695-706, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17418466

ABSTRACT

Traditionally, monitoring of soil, groundwater and surface water quality is coordinated by different authorities in the Netherlands. Nowadays, the European Water Framework Directive (EU, 2,000) stimulates an integrated approach of the complete soil-groundwater-surface water system. Based on water quality data from several test catchments, we propose a conceptual model stating that stream water quality at different discharges is the result of different mixing ratios of groundwater from different depths. This concept is used for a regional study of the groundwater contribution to surface water contamination in the Dutch province of Noord-Brabant, using the large amount of available data from the regional monitoring networks. The results show that groundwater is a dominant source of surface water contamination. The poor chemical condition of upper and shallow groundwater leads to exceedance of the quality standards in receiving surface waters, especially during quick flow periods.


Subject(s)
Fresh Water/analysis , Models, Theoretical , Water Movements , Water Pollutants, Chemical/analysis , Water Supply/analysis , Agriculture , Bicarbonates/analysis , Environmental Monitoring , Metals, Heavy/analysis , Netherlands , Nitrates/analysis , Phosphorus/analysis , Sulfates/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...