Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pract Radiat Oncol ; 5(6): e679-87, 2015.
Article in English | MEDLINE | ID: mdl-26421834

ABSTRACT

PURPOSE: To assess the usefulness of electronic portal imaging device (EPID)-based 3-dimensional (3D) transit dosimetry in a radiation therapy department by analyzing a large set of dose verification results. METHODS AND MATERIALS: In our institution, routine in vivo dose verification of all treatments is performed by means of 3D transit dosimetry using amorphous silicon EPIDs. The total 3D dose distribution is reconstructed using a back-projection algorithm and compared with the planned dose distribution using 3D gamma evaluation. Dose reconstruction and gamma evaluation software runs automatically in our clinic, and analysis results are (almost) immediately available. If a deviation exceeds our alert criteria, manual inspection is required. If necessary, additional phantom measurements are performed to separate patient-related errors from planning or delivery errors. Three-dimensional transit dosimetry results were analyzed per treatment site between 2012 and 2014 and the origin of the deviations was assessed. RESULTS: In total, 4689 of 15,076 plans (31%) exceeded the alert criteria between 2012 and 2014. These alerts were patient-related and attributable to limitations of our back-projection and dose calculation algorithm or to external sources. Clinically relevant deviations were detected for approximately 1 of 430 patient treatments. Most of these errors were because of anatomical changes or deviations from the routine clinical procedure and would not have been detected by pretreatment verification. Although cone beam computed tomography scans yielded information about anatomical changes, their effect on the dose delivery was assessed quantitatively by means of 3D in vivo dosimetry. CONCLUSIONS: EPID-based transit dosimetry is a fast and efficient dose verification technique. It provides more useful information and is less time-consuming than pretreatment verification measurements of intensity modulated radiation therapy and volumetric modulated arc therapy. Large-scale implementation of 3D transit dosimetry is therefore a powerful method to guarantee safe dose delivery during radiation therapy.


Subject(s)
Imaging, Three-Dimensional/methods , Lung Neoplasms/radiotherapy , Radiometry/instrumentation , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/instrumentation , Computer Simulation , Equipment Design , Humans , Radiometry/methods , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods , Time Factors
2.
Radiother Oncol ; 116(1): 70-4, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26142267

ABSTRACT

BACKGROUND AND PURPOSE: Target dose verification for VMAT treatments of head-and-neck (H&N) cancer using 3D in vivo EPID dosimetry is expected to be affected by daily anatomical changes. By including these anatomical changes through cone-beam CT (CBCT) information, the magnitude of this effect is investigated. MATERIALS AND METHODS: For 20 VMAT-treated H&N cancer patients, all plan-CTs (pCTs), 633 CBCTs and 1266 EPID movies were used to compare four dose distributions per fraction: treatment planning system (TPS) calculated dose and EPID reconstructed in vivo dose, both determined using the pCT and using the CBCT. D2, D50 and D98 of the planning target volume (PTV) were determined per dose distribution. RESULTS: When including daily anatomical information, D2, D50 and D98 of the PTV change on average by 0.0±0.4% according to TPS calculations; the standard deviation of the difference between EPID and TPS target dose changes from 2.5% (pCT) to 2.1% (CBCT). Small time trends are seen for both TPS and EPID dose distributions when using the pCT, which disappear when including CBCT information. CONCLUSIONS: Daily anatomical changes hardly influence the target dose distribution for H&N VMAT treatments according to TPS recalculations. Including CBCT information in EPID dose reconstructions slightly improves the agreement with TPS calculations.


Subject(s)
Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/radiotherapy , Cone-Beam Computed Tomography , Humans , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...