Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 62(16): 6397-6410, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37039430

ABSTRACT

The properties of transition-metal complexes and their chemical dynamics can be effectively modified with ligand substitutions, and theory can be a great aid to such molecular engineering. In this paper, we first theoretically explored how substitution with a Cl atom at different positions of the terpyridine ligand affects the electronic structure of the [Fe(terpy)2]2+ complex. We found that besides the substitution at position 4', the next most promising candidate to cause substantial electronic effects is that where the side pyridine ring is substituted at position 5 (ß). Therefore, next, we examined in detail the Fe(II) complexes of the 5-chloro and 5,5″-dichloro derivatives of terpy, theoretically and experimentally, to reveal how these substitutions modify the ground state properties and the lifetime of the excited quintet state in such complexes. In addition, we extend the investigation to the complexes of the analogously substituted derivatives of 4'-SMe-terpy. The substitution at position(s) 5 (and 5″) with Cl lowers the energy of the quintet state and increases its lifetime; the results on the 4'-SMe-substituted complexes show similar changes with these two substitutions, verifying that these effects are more or less additive. This study contributes to the enhancement of our molecular engineering toolset for modifying the potential energy landscape of similar complexes.

2.
Commun Chem ; 6(1): 7, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36697805

ABSTRACT

It has long been known that irradiation with visible light converts Fe(II) polypyridines from their low-spin (singlet) to high-spin (quintet) state, yet mechanistic interpretation of the photorelaxation remains controversial. Herein, we simulate the full singlet-triplet-quintet dynamics of the [Fe(terpy)2]2+ (terpy = 2,2':6',2"-terpyridine) complex in full dimension, in order to clarify the complex photodynamics. Importantly, we report a branching mechanism involving two sequential processes: a dominant 3MLCT→3MC(3T2g)→3MC(3T1g)→5MC, and a minor 3MLCT→3MC(3T2g)→5MC component. (MLCT = metal-to-ligand charge transfer, MC = metal-centered). While the direct 3MLCT→5MC mechanism is considered as a relevant alternative, we show that it could only be operative, and thus lead to competing pathways, in the absence of 3MC states. The quintet state is populated on the sub-picosecond timescale involving non-exponential dynamics and coherent Fe-N breathing oscillations. The results are in agreement with the available time-resolved experimental data on Fe(II) polypyridines, and fully describe the photorelaxation dynamics.

3.
Phys Rev Lett ; 131(26): 263202, 2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38215370

ABSTRACT

We demonstrate long-lived electronic coherences in molecules using a combination of measurements with shaped octave spanning ultrafast laser pulses and calculations of the light matter interaction. Our pump-probe measurements prepare and interrogate entangled nuclear-electronic wave packets whose electronic phase remains well defined despite vibrational motion along many degrees of freedom. The experiments and calculations illustrate how coherences between excited states can survive, even when coherence with the ground state is lost, and may have important implications for many areas of attosecond science and photochemistry.

4.
J Chem Phys ; 153(18): 184304, 2020 Nov 14.
Article in English | MEDLINE | ID: mdl-33187419

ABSTRACT

We perform time-resolved ionization spectroscopy measurements of the excited state dynamics of CH2I2 and CH2IBr following photoexcitation in the deep UV. The fragment ions produced by ionization with a vacuum-ultraviolet probe pulse are measured with velocity map imaging, and the momentum resolved yields are compared with trajectory surface hopping calculations of the measurement observable. Together with recent time-resolved photoelectron spectroscopy measurements of the same dynamics, these results provide a detailed picture of the coupled electronic and nuclear dynamics involved. Our measurements highlight the non-adiabatic coupling between electronic states, which leads to notable differences in the dissociation dynamics for the two molecules.

5.
Phys Rev Lett ; 125(5): 053202, 2020 Jul 31.
Article in English | MEDLINE | ID: mdl-32794883

ABSTRACT

We demonstrate coherent control over internal conversion during strong-field molecular ionization with shaped, few-cycle laser pulses. The control is driven by interference in different neutral states, which are coupled via non-Born-Oppenheimer terms in the molecular Hamiltonian. Our measurements highlight the preservation of electronic coherence in nonadiabatic transitions between electronic states.

6.
J Chem Phys ; 151(10): 104307, 2019 Sep 14.
Article in English | MEDLINE | ID: mdl-31521084

ABSTRACT

Simulation of the ultrafast excited-state dynamics and elastic X-ray scattering of the [Fe(bmip)2]2+ [bmip = 2,6-bis(3-methyl-imidazole-1-ylidine)-4-pyridine] complex is presented and analyzed. We employ quantum wavepacket dynamics simulations on a 5-dimensional potential energy surface (PES) calculated by time-dependent density functional theory with 26 coupled diabatic states. The simulations are initiated by explicit inclusion of a time-dependent electromagnetic field. In the case of resonant excitation into singlet metal-to-ligand charge transfer (1MLCT) states, kinetic (exponential) population dynamics are observed with small nuclear motion. In agreement with transient optical absorption spectroscopy experiments, we observe a subpicosecond 1MLCT → 3MLCT intersystem crossing and a subsequent decay into triplet metal-centered (3MC) states on a picosecond time scale. The simulated time-resolved difference scattering signal is dominated by the 3MC component, for which the structural distortions are significant. On the other hand, excitation into 1MC states leads to ballistic (nonexponential) population dynamics with strong nuclear motion. The reason for these ballistic dynamics is that in this case, the excitation occurs into a nonequilibrium region, i.e., far from the minimum of the 1MC PES. This results in wavepacket dynamics along the principal breathing mode, which is clearly visible in both the population dynamics and difference scattering. Finally, the importance of decomposing the difference scattering into components by electronic states is highlighted, information which is not accessible from elastic X-ray scattering experiments.

7.
J Chem Phys ; 150(17): 174201, 2019 May 07.
Article in English | MEDLINE | ID: mdl-31067867

ABSTRACT

We compare the excited state dynamics of diiodomethane (CH2I2) and bromoiodomethane (CH2BrI) using time resolved photoelectron spectroscopy. A 4.65 eV UV pump pulse launches a dissociative wave packet on excited states of both molecules and the ensuing dynamics are probed via photoionization using a 7.75 eV probe pulse. The resulting photoelectrons are measured with the velocity map imaging technique for each pump-probe delay. Our measurements highlight differences in the dynamics for the two molecules, which are interpreted with high-level ab initio molecular dynamics (trajectory surface hopping) calculations. Our analysis allows us to associate features in the photoelectron spectrum with different portions of the excited state wave packet represented by different trajectories. The excited state dynamics in bromoiodomethane are simple and can be described in terms of direct dissociation along the C-I coordinate, whereas the dynamics in diiodomethane involve internal conversion and motion along multiple dimensions.

8.
J Chem Theory Comput ; 14(8): 3967-3974, 2018 Aug 14.
Article in English | MEDLINE | ID: mdl-29940108

ABSTRACT

The excited-state dynamics of two functional Fe-carbene complexes, [Fe(bmip)2]2+ (bmip = 2,6-bis(3-methyl-imidazole-1-ylidene)-pyridine) and [Fe(btbip)2]2+ (btbip = 2,6-bis(3- tert-butyl-imidazole-1-ylidene)pyridine), are studied using the spin-vibronic model. In contrast to the usual projection of the ground state nuclear wave function onto an excited state surface, the dynamics are initiated by an explicit interaction term between the external time-dependent electric field (laser pulse) and the transition dipole moment of the molecule. The results show that the spin-vibronic model, as constructed directly from electronic structure calculations, exhibits erroneous, polarization-dependent relaxation dynamics stemming from artificial interference of coupled relaxation pathways. This is due to the lack of rotational invariance in the description of excitation into degenerate states. We introduce and discuss a correction using the spherical basis and complex transition dipole moments. This modification in the interaction Hamiltonian leads to rotationally invariant excitation and produces polarization-independent population dynamics.

9.
J Phys Chem Lett ; 7(11): 2009-14, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27187868

ABSTRACT

Fe(II) complexes have long been assumed unsuitable as photosensitizers because of their low-lying nonemissive metal centered (MC) states, which inhibit electron transfer. Herein, we describe the excited-state relaxation of a novel Fe(II) complex that incorporates N-heterocyclic carbene ligands designed to destabilize the MC states. Using first-principles quantum nuclear wavepacket simulations we achieve a detailed understanding of the photoexcited decay mechanism, demonstrating that it is dominated by an ultrafast intersystem crossing from (1)MLCT-(3)MLCT proceeded by slower kinetics associated with the conversion into the (3)MC states. The slowest component of the (3)MLCT decay, important in the context of photosensitizers, is much longer than related Fe(II) complexes because the population transfer to the (3)MC states occurs in a region of the potential where the energy gap between the (3)MLCT and (3)MC states is large, making the population transfer inefficient.

10.
Phys Rev Lett ; 116(6): 063002, 2016 Feb 12.
Article in English | MEDLINE | ID: mdl-26918985

ABSTRACT

We study strong-field molecular ionization as a function of pulse duration. Experimental measurements of the photoelectron yield for a number of molecules reveal competition between different ionization continua (cationic states) which depends strongly on pulse duration. Surprisingly, in the limit of short pulse duration, we find that a single ionic continuum dominates the yield, whereas multiple continua are produced for longer pulses. Using calculations which take vibrational dynamics into account, we interpret our results in terms of nuclear motion and nonadiabatic dynamics during the ionization process.

11.
Inorg Chem ; 55(4): 1934-9, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26831570

ABSTRACT

Simulations of prebiotic NH3 synthesis from NO3⁻ and NO2⁻ on pyrite surfaces under hydrothermal conditions are reported. Ab initio metadynamics calculations have successfully explored the full reaction path which explains earlier experimental observations. We have found that the reaction mechanism can be constructed from stepwise single atom transfers which are compatible with the expected reaction time scales. The roles of the hot-pressurized water and of the pyrite surfaces have been addressed. The mechanistic picture that emerged from the simulations strengthens the theory of chemoautotrophic origin of life by providing plausible reaction pathways for the formation of ammonia within the iron-sulfur-world scenario.


Subject(s)
Ammonia/chemistry , Prebiotics
12.
Phys Chem Chem Phys ; 17(26): 17375-9, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26077541

ABSTRACT

The supercritical water-pyrite interface has been studied by ab initio molecular dynamics simulation. Extreme conditions are relevant in the iron-sulfur world (ISW) theory where prebiotic chemical reactions are postulated to occur at the mineral-water interface. We have investigated the properties of this interface under such conditions. We have come to the conclusion that hot-pressurized water on pyrite leads to an interface where a dry pyrite surface is in contact with the nearby SC water without significant chemical interactions. This picture is markedly different from that under ambient conditions where the surface is fully covered with adsorbed water molecules which is of relevance for the surface reactions of the ISW hypothesis.

13.
J Phys Chem A ; 119(28): 7753-65, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-25859909

ABSTRACT

The direct reaction kinetic method of low pressure fast discharge flow (DF) with resonance fluorescence monitoring of OH (RF) has been applied to determine rate coefficients for the overall reactions OH + C2H5F (EtF) (1) and OH + CH3C(O)F (AcF) (2). Acetyl fluoride reacts slowly with the hydroxyl radical, the rate coefficient at laboratory temperature is k2(300 K) = (0.74 ± 0.05) × 10(-14) cm(3) molecule(-1) s(-1) (given with 2σ statistical uncertainty). The temperature dependence of the reaction does not obey the Arrhenius law and it is described well by the two-exponential rate expression of k2(300-410 K) = 3.60 × 10(-3) exp(-10500/T) + 1.56 × 10(-13) exp(-910/T) cm(3) molecule(-1) s(-1). The rate coefficient of k1 = (1.90 ± 0.19) × 10(-13) cm(3) molecule(-1) s(-1) has been determined for the EtF-reaction at room temperature (T = 298 K). Microscopic mechanisms for the OH + CH3C(O)F reaction have also been studied theoretically using the ab initio CBS-QB3 and G4 methods. Variational transition state theory was employed to obtain rate coefficients for the OH + CH3C(O)F reaction as a function of temperature on the basis of the ab initio data. The calculated rate coefficients are in good agreement with the experimental data. It is revealed that the reaction takes place predominantly via the indirect H-abstraction mechanism involving H-bonded prereactive complexes and forming the nascent products of H2O and the CH2CFO radical. The non-Arrhenius behavior of the rate coefficient at temperatures below 500 K is ascribed to the significant tunneling effect of the in-the-plane H-abstraction dynamic bottleneck. The production of FC(O)OH + CH3 via the addition/elimination mechanism is hardly competitive due to the significant barriers along the reaction routes. Photochemical experiments of AcF were performed at 248 nm by using exciplex lasers. The total photodissociation quantum yield for CH3C(O)F has been found significantly less than unity; among the primary photochemical processes, C-C bond cleavage is by far dominating compared with CO-elimination. The absorption spectrum of AcF has also been determined by displaying a strong blue shift compared with the spectra of aliphatic carbonyls. Consequences of the results on atmospheric chemistry have been discussed.

14.
J Phys Chem C Nanomater Interfaces ; 119(11): 5888-5902, 2015 Mar 19.
Article in English | MEDLINE | ID: mdl-25838847

ABSTRACT

Theoretical predictions show that depending on the populations of the Fe 3d xy , 3d xz , and 3d yz orbitals two possible quintet states can exist for the high-spin state of the photoswitchable model system [Fe(terpy)2]2+. The differences in the structure and molecular properties of these 5B2 and 5E quintets are very small and pose a substantial challenge for experiments to resolve them. Yet for a better understanding of the physics of this system, which can lead to the design of novel molecules with enhanced photoswitching performance, it is vital to determine which high-spin state is reached in the transitions that follow the light excitation. The quintet state can be prepared with a short laser pulse and can be studied with cutting-edge time-resolved X-ray techniques. Here we report on the application of an extended set of X-ray spectroscopy and scattering techniques applied to investigate the quintet state of [Fe(terpy)2]2+ 80 ps after light excitation. High-quality X-ray absorption, nonresonant emission, and resonant emission spectra as well as X-ray diffuse scattering data clearly reflect the formation of the high-spin state of the [Fe(terpy)2]2+ molecule; moreover, extended X-ray absorption fine structure spectroscopy resolves the Fe-ligand bond-length variations with unprecedented bond-length accuracy in time-resolved experiments. With ab initio calculations we determine why, in contrast to most related systems, one configurational mode is insufficient for the description of the low-spin (LS)-high-spin (HS) transition. We identify the electronic structure origin of the differences between the two possible quintet modes, and finally, we unambiguously identify the formed quintet state as 5E, in agreement with our theoretical expectations.

15.
J Phys Chem A ; 117(48): 12726-33, 2013 Dec 05.
Article in English | MEDLINE | ID: mdl-24246010

ABSTRACT

Many reactions feature symmetry variation along the reaction path on the potential energy surface. The interconversion of the point group symmetry of the stationary points can be characteristic of these processes. Increasing the temperature, however, leads to the loss of symmetry in its traditional yes-no language. We find that in such cases the instantaneous distance of the molecular structure from its symmetric counterpart is a suitable collective variable that can describe the reaction process. We show that this quantity, the continuous symmetry measure (CSM), has a positive linear relationship with temperature, implying that even highly symmetric molecules should be considered as asymmetric above 0 K. Using ab initio molecular dynamics, we simulate the temperature-induced Cope rearrangements of several fluxional molecules and employ different CSMs to follow the reaction progress. We use this methodology to demonstrate the validity of important concepts governing these reactions: Woodward-Hoffmann rules and TS aromaticity. Statistical analysis of the CSM distributions reveals that ligands connected to the carbon frame have profound effect on the reaction course. In particular, our results show that lower temperatures tend to enhance the differences between the TS-stabilizing effect of the substituents.

16.
J Chem Theory Comput ; 9(1): 509-519, 2013 Jan 08.
Article in English | MEDLINE | ID: mdl-25821416

ABSTRACT

The electronic structure relevant to low spin (LS)↔high spin (HS) transitions in Fe(II) coordination compounds with a FeN6 core are studied. The selected [Fe(tz)6]2+ (1) (tz = 1H-tetrazole), [Fe(bipy)3]2+ (2) (bipy = 2,2'-bipyridine), and [Fe(terpy)2]2+ (3) (terpy = 2,2':6',2″-terpyridine) complexes have been actively studied experimentally, and with their respective mono-, bi-, and tridentate ligands, they constitute a comprehensive set for theoretical case studies. The methods in this work include density functional theory (DFT), time-dependent DFT (TD-DFT), and multiconfigurational second order perturbation theory (CASPT2). We determine the structural parameters as well as the energy splitting of the LS-HS states (ΔEHL) applying the above methods and comparing their performance. We also determine the potential energy curves representing the ground and low-energy excited singlet, triplet, and quintet d6 states along the mode(s) that connect the LS and HS states. The results indicate that while DFT is well suited for the prediction of structural parameters, an accurate multiconfigurational approach is essential for the quantitative determination of ΔEHL. In addition, a good qualitative agreement is found between the TD-DFT and CASPT2 potential energy curves. Although the TD-DFT results might differ in some respect (in our case, we found a discrepancy at the triplet states), our results suggest that this approach, with due care, is very promising as an alternative for the very expensive CASPT2 method. Finally, the two-dimensional (2D) potential energy surfaces above the plane spanned by the two relevant configuration coordinates in [Fe(terpy)2]2+ were computed at both the DFT and CASPT2 levels. These 2D surfaces indicate that the singlet-triplet and triplet-quintet states are separated along different coordinates, i.e., different vibration modes. Our results confirm that in contrast to the case of complexes with mono- and bidentate ligands, the singlet-quintet transitions in [Fe(terpy)2]2+ cannot be described using a single configuration coordinate.

17.
J Phys Chem A ; 116(46): 11434-40, 2012 Nov 26.
Article in English | MEDLINE | ID: mdl-22866978

ABSTRACT

We demonstrate how the evolution of a bound vibrational wave packet can be controlled by a strong field laser pulse. We consider two different control schemes within the same molecule (CH(2)BrI): reshaping of the wave packet via strong field population transfer ("hole burning"), and redirecting its trajectory by dressing the potential energy surface on which the wave packet evolves ("photon locking"). Our measurements are compared with calculations using wave packet propagation on ab initio potential energy surfaces.


Subject(s)
Lasers , Quantum Theory , Surface Properties , Vibration
18.
J Chem Phys ; 136(17): 174303, 2012 May 07.
Article in English | MEDLINE | ID: mdl-22583226

ABSTRACT

Within the B̃ absorption band of CH(2)BrCl, we theoretically analyze the laser-induced control of the Br/Cl branching ratio, Br + CH(2)Cl ← CH(2)BrCl → CH(2)Br + Cl, with CH(2)BrCl initially in its vibrational ground state. For weak-field excitation, the Br/Cl branching ratio increases as a function of wavelength, however, for wavelengths below 180 nm the branching ratio cannot be made smaller than 0.4. Using optimal control theory, we show that the branching ratio can be made significantly less than 0.4, only when very strong fields are employed. Thus, the present work strongly suggests that a Tannor-Rice type laser control mechanism for selective bond breakage in CH(2)BrCl cannot take place without accompanying photoionization.

19.
Phys Chem Chem Phys ; 12(42): 14203-16, 2010 Nov 14.
Article in English | MEDLINE | ID: mdl-20877889

ABSTRACT

The ultrafast photodissociation dynamics of CH(2)BrI(+) into CH(2)Br(+) + I is studied using high level ab initio electronic structure calculations in conjunction with integration of the time-dependent Schrödinger equation and compared with measured pump-probe signals. These pump-probe measurements provide evidence for momentum-dependent dissociation, which is interpreted using two theoretical models. The first is based on DFT and TD-DFT calculations neglecting spin-orbit coupling, while the other, more rigorous model employs a larger number of coupled multi-configurational potentials obtained by means of CASSCF calculations. The latter model highlights the role of spin-orbit coupling between ionic electronic states as well as the effect of strong fields in the quantum dynamics including Stark-shifts and multi-photon excitation.

20.
J Phys Chem A ; 114(2): 1207-11, 2010 Jan 21.
Article in English | MEDLINE | ID: mdl-20000617

ABSTRACT

We study the transition state of pericyclic reactions at elevated temperature with unbiased ab initio molecular dynamics. We find that the transition state of the intramolecular rearrangements for barbaralane and bullvalene remains aromatic at high temperature despite the significant thermal atomic motions. Structural, magnetic, and electronic properties of the dynamical transition state show the concertedness and aromatic character. Free-energy calculations also support the validity of the transition state theory for the present rearrangement reactions. The calculations demonstrate that cyclic delocalization represents a strong force to synchronize the thermal atomic motions even at high temperatures.

SELECTION OF CITATIONS
SEARCH DETAIL
...