Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 14(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38927015

ABSTRACT

The production of nanomaterials through environmentally friendly methods is a top priority in the sustainable development of nanotechnology. This paper presents data on the synthesis of silver nanoparticles using an aqueous extract of Sphagnum fallax moss at room temperature. The morphology, stability, and size of the nanoparticles were analyzed using various techniques, including transmission electron microscopy, Doppler laser velocimetry, and UV-vis spectroscopy. In addition, Fourier transform infrared spectroscopy was used to analyze the presence of moss metabolites on the surface of nanomaterials. The effects of different concentrations of citrate-stabilized and moss extract-stabilized silver nanoparticles on cell viability, necrosis induction, and cell impedance were compared. The internalization of silver nanoparticles into both monolayers and three-dimensional cells spheroids was evaluated using dark-field microscopy and hyperspectral imaging. An eco-friendly method for the synthesis of silver nanoparticles at room temperature is proposed, which makes it possible to obtain spherical nanoparticles of 20-30 nm in size with high bioavailability and that have potential applications in various areas of human life.


Subject(s)
Metal Nanoparticles , Plant Extracts , Silver , Silver/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Plant Extracts/chemistry , Plant Extracts/pharmacology , Humans , Cell Survival/drug effects , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Particle Size
2.
Polymers (Basel) ; 14(2)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35054750

ABSTRACT

Mesenchymal stem cells (MSCs) have extensive pluripotent potential to differentiate into various cell types, and thus they are an important tool for regenerative medicine and biomedical research. In this work, the differentiation of hTERT-transduced adipose-derived MSCs (hMSCs) into chondrocytes, adipocytes and osteoblasts on substrates with nanotopography generated by magnetic iron oxide nanoparticles (MNPs) and DNA was investigated. Citrate-stabilized MNPs were synthesized by the chemical co-precipitation method and sized around 10 nm according to microscopy studies. It was shown that MNPs@DNA coatings induced chondrogenesis and osteogenesis in hTERT-transduced MSCs. The cells had normal morphology and distribution of actin filaments. An increase in the concentration of magnetic nanoparticles resulted in a higher surface roughness and reduced the adhesion of cells to the substrate. A glass substrate modified with magnetic nanoparticles and DNA induced active chondrogenesis of hTERT-transduced MSC in a twice-diluted differentiation-inducing growth medium, suggesting the possible use of nanostructured MNPs@DNA coatings to obtain differentiated cells at a reduced level of growth factors.

3.
Micromachines (Basel) ; 12(12)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34945330

ABSTRACT

The importance and need for eco-oriented technologies has increased worldwide, which leads to an enhanced development of methods for the synthesis of nanoparticles using biological agents. This review de-scribes the current approaches to the preparation of biogenic silver nanoparticles, using plant extracts and filtrates of fungi and microorganisms. The peculiarities of the synthesis of particles depending on the source of biocomponents are considered as well as physico-morphological, antibacterial and antifungal properties of the resulting nanoparticles which are compared with such properties of silver nanoparticles obtained by chemical synthesis. Special attention is paid to the process of self-assembly of biogenic silver nanoparticles.

4.
J Biotechnol ; 325: 25-34, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-33285149

ABSTRACT

Fe3O4 nanoparticles were obtained by chemical coprecipitation of iron chloride and sodium hydroxide. The morphology and sizes of the obtained nanoparticles were characterized using laser Doppler velocimetry, transmission electron and atomic force microscopy. Then the nanoparticles were stabilized by three polycations (polyethylenimine (PEI), poly(allylamine hydrochloride) (PAH), poly(diallyldimethylammonium chloride) (PDADMAC)) to increase their biocompatibility. The cytotoxicity of the obtained polymer-stabilized nanoparticles was studied using a human lung carcinoma cell line (A549). The biodistribution of nanoparticles stabilized by polycations in human lung carcinoma cells was analyzed by transmission electron microscopy, and the toxicity of nanomaterials was evaluated using toxicity tests and flow cytometry. As a result, the most biocompatible nanoparticle-biopolymer complex was identified. PAH stabilized magnetic nanoparticles demonstrated the best biocompatibility, and the PEI-magnetic nanoparticle complex was the most toxic.


Subject(s)
Magnetite Nanoparticles , Nanoparticles , A549 Cells , Cell Survival , Humans , Magnetite Nanoparticles/toxicity , Polyelectrolytes , Polyethyleneimine/toxicity , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...