Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Environ Radioact ; 272: 107334, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38008046

ABSTRACT

The concentration and sorption behavior of 237Np on the bottom sediments of water bodies in the Far East region of Russia (Lake Khanka and Peter the Great Bay) were studied for the first time. The 237Np concentrations vary from 1.06 × 10-6 to 4.43 × 10-5 mBq g-1 in the bottom sediments of Lake Khanka and from 1.05 × 10-4 to 2.52 × 10-3 mBq g-1 for Amur Bay. The experiment on the adsorption of Np on marine and lake sediment showed that it is sorbed through complexation with silicates (albite, leucite). The Np sorption isotherm on marine sediments is described by the Langmuir equation; the distribution coefficients (Kd) of Np vary from 57 to 588 mL g-1. For lake sediments, the isotherm is described by the Henry equation; the Kd value reaches 935 mL g-1.


Subject(s)
Neptunium , Radiation Monitoring , Water Pollutants, Chemical , Lakes , Bays , Asia, Eastern , Geologic Sediments , Water Pollutants, Chemical/analysis , Environmental Monitoring
2.
J Environ Radioact ; 232: 106569, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33714079

ABSTRACT

About ten years have passed since the last published report in Russian on the speciation and distribution features of radionuclides in the bottom sediment of Production Association (PA) "Mayak" (further mentioned as Mayak) artificial reservoirs. Herein, the desorption parameters of 137Cs, 90Sr, 241Am, and 238,239+240Pu and their association with bottom sediment components were investigated in two Mayak reservoirs (R-17 (decommissioned) and R-4 (still in use) with big differences in size, activity and water regime). It was established that 137Cs and 90Sr desorption from the R-17 bottom sediment reach constant values after 24 h, and the desorption degree is not dependant on pH but on ionic strength. Sequential extraction indicated that the main accumulation mechanism of 137Cs is incorporation into the clay minerals. The maximum plutonium content was detected in the residual fraction of the R-17 bottom sediment, which could be associated with the effects of precipitation aging. In R-4, plutonium is equally distributed between residual and bound to organic matter fractions. The 241Am is associated with carbonates in the R-17 bottom sediment and with organic matter in the R-4 bottom sediment and to lesser extent with iron-manganese oxides. The radionuclides are becoming less environmentally available with time since deposition.


Subject(s)
Plutonium , Radiation Monitoring , Water Pollutants, Radioactive , Geologic Sediments , Plutonium/analysis , Russia , Water Pollutants, Radioactive/analysis
3.
J Environ Radioact ; 216: 106184, 2020 May.
Article in English | MEDLINE | ID: mdl-32056794

ABSTRACT

In April and August 2015, a massive fire occurred in the Chernobyl Exclusion zone. The fire spread to neighboring areas due to the prevailing strong winds. In this paper, we analyze the peat fires as a unique source of radioactive contamination. After an expedition directly to the peat fire site (the evacuation zone of the Bryansk region), we collected a number of aerosol samples. We came to the conclusion that peat fires cannot be the reason for radioactive particle transport in the Bryansk region as well as in the Chernobyl evacuation zone. During the peat fire, radioactive contamination was not transferred by aerosols beyond 500 m. The 137Cs concentration in the aerosol filters varied between 0.55 and 0.64 Bq/m3, and that at the same distance from the fire seat and peat edge was 4.4∙10-3 Bq/m3; the activity values in the peat bog and in the nearest inhabited locality did not exceed the background values. Strontium-90 was not found in aerosol samples. The soil-to-air transport rate of 137Cs was 2.7∙10-6. After the Chernobyl accident, the majority of the 137Cs was incorporated into the structure of clay minerals, and these did not change during the peat fire. The mobility of 137Cs in the flight peat material particles was established. To confirm the territory status of the evacuation zone, we also collected some food samples. Berries and mushrooms consumed at the assumed rate for dose estimation would result in doses that exceed the public dose limit by approximately a factor of five.


Subject(s)
Soil , Aerosols , Air Pollutants, Radioactive , Cesium Radioisotopes , Fires , Radiation Monitoring , Russia
SELECTION OF CITATIONS
SEARCH DETAIL
...