Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Theor Biol ; 582: 111741, 2024 04 07.
Article in English | MEDLINE | ID: mdl-38280543

ABSTRACT

Evolutionary theory has typically focused on pairwise interactions, such as those between hosts and parasites, with relatively little work having been carried out on more complex interactions including hyperparasites: parasites of parasites. Hyperparasites are common in nature, with the chestnut blight fungus virus CHV-1 a well-known natural example, but also notably include the phages of important human bacterial diseases. We build a general modeling framework for the evolution of hyperparasites that highlights the central role that the ability of a hyperparasite to be transmitted with its parasite plays in their evolution. A key result is that hyperparasites which transmit with their parasite hosts (hitchhike) will be selected for lower virulence, trending towards hypermutualism or hypercommensalism. We examine the impact on the evolution of hyperparasite systems of a wide range of host and parasite traits showing, for example, that high parasite virulence selects for higher hyperparasite virulence resulting in reductions in parasite virulence when hyperparasitized. Furthermore, we show that acute parasite infection will also select for increased hyperparasite virulence. Our results have implications for hyperparasite research, both as biocontrol agents and for their role in shaping community ecology and evolution and moreover emphasize the importance of understanding evolution in the context of multitrophic interactions.


Subject(s)
Biological Evolution , Parasites , Animals , Humans , Models, Biological , Ecology , Plant Diseases/microbiology , Host-Parasite Interactions
2.
PLoS Biol ; 21(9): e3002268, 2023 09.
Article in English | MEDLINE | ID: mdl-37676899

ABSTRACT

The management of future pandemic risk requires a better understanding of the mechanisms that determine the virulence of emerging zoonotic viruses. Meta-analyses suggest that the virulence of emerging zoonoses is correlated with but not completely predictable from reservoir host phylogeny, indicating that specific characteristics of reservoir host immunology and life history may drive the evolution of viral traits responsible for cross-species virulence. In particular, bats host viruses that cause higher case fatality rates upon spillover to humans than those derived from any other mammal, a phenomenon that cannot be explained by phylogenetic distance alone. In order to disentangle the fundamental drivers of these patterns, we develop a nested modeling framework that highlights mechanisms that underpin the evolution of viral traits in reservoir hosts that cause virulence following cross-species emergence. We apply this framework to generate virulence predictions for viral zoonoses derived from diverse mammalian reservoirs, recapturing trends in virus-induced human mortality rates reported in the literature. Notably, our work offers a mechanistic hypothesis to explain the extreme virulence of bat-borne zoonoses and, more generally, demonstrates how key differences in reservoir host longevity, viral tolerance, and constitutive immunity impact the evolution of viral traits that cause virulence following spillover to humans. Our theoretical framework offers a series of testable questions and predictions designed to stimulate future work comparing cross-species virulence evolution in zoonotic viruses derived from diverse mammalian hosts.


Subject(s)
Chiroptera , Zoonoses , Animals , Humans , Chiroptera/virology , Phylogeny , Virulence/genetics , Zoonoses/virology
3.
Infect Dis Model ; 6: 1073-1091, 2021.
Article in English | MEDLINE | ID: mdl-34585030

ABSTRACT

For decades, mathematical models of disease transmission have provided researchers and public health officials with critical insights into the progression, control, and prevention of disease spread. Of these models, one of the most fundamental is the SIR differential equation model. However, this ubiquitous model has one significant and rarely acknowledged shortcoming: it is unable to account for a disease's true infectious period distribution. As the misspecification of such a biological characteristic is known to significantly affect model behavior, there is a need to develop new modeling approaches that capture such information. Therefore, we illustrate an innovative take on compartmental models, derived from their general formulation as systems of nonlinear Volterra integral equations, to capture a broader range of infectious period distributions, yet maintain the desirable formulation as systems of differential equations. Our work illustrates a compartmental model that captures any Erlang distributed duration of infection with only 3 differential equations, instead of the typical inflated model sizes required by traditional differential equation compartmental models, and a compartmental model that captures any mean, standard deviation, skewness, and kurtosis of an infectious period distribution with 4 differential equations. The significance of our work is that it opens up a new class of easy-to-use compartmental models to predict disease outbreaks that do not require a complete overhaul of existing theory, and thus provides a starting point for multiple research avenues of investigation under the contexts of mathematics, public health, and evolutionary biology.

4.
Proc Biol Sci ; 288(1956): 20210900, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34375554

ABSTRACT

There is increasing interest in the role that evolution may play in current and future pandemics, but there is often also considerable confusion about the actual evolutionary predictions. This may be, in part, due to a historical separation of evolutionary and medical fields, but there is a large, somewhat nuanced body of evidence-supported theory on the evolution of infectious disease. In this review, we synthesize this evolutionary theory in order to provide a framework for clearer understanding of the key principles. Specifically, we discuss the selection acting on zoonotic pathogens' transmission rates and virulence at spillover and during emergence. We explain how the direction and strength of selection during epidemics of emerging zoonotic disease can be understood by a three Ts framework: trade-offs, transmission, and time scales. Virulence and transmission rate may trade-off, but transmission rate is likely to be favoured by selection early in emergence, particularly if maladapted zoonotic pathogens have 'no-cost' transmission rate improving mutations available to them. Additionally, the optimal virulence and transmission rates can shift with the time scale of the epidemic. Predicting pathogen evolution, therefore, depends on understanding both the trade-offs of transmission-improving mutations and the time scales of selection.


Subject(s)
Communicable Diseases , Epidemics , Biological Evolution , Communicable Diseases/epidemiology , Humans , Virulence
5.
Pathog Glob Health ; 114(8): 407-425, 2020 12.
Article in English | MEDLINE | ID: mdl-33185145

ABSTRACT

The emergence of SARS-CoV-2, a coronavirus with suspected bat origins, highlights a critical need for heightened understanding of the mechanisms by which bats maintain potentially zoonotic viruses at the population level and transmit these pathogens across species. We review mechanistic models, which test hypotheses of the transmission dynamics that underpin viral maintenance in bat systems. A search of the literature identified only twenty-five mechanistic models of bat-virus systems published to date, derived from twenty-three original studies. Most models focused on rabies and related lyssaviruses (eleven), followed by Ebola-like filoviruses (seven), Hendra and Nipah-like henipaviruses (five), and coronaviruses (two). The vast majority of studies has modelled bat virus transmission dynamics at the population level, though a few nested within-host models of viral pathogenesis in population-level frameworks, and one study focused on purely within-host dynamics. Population-level studies described bat virus systems from every continent but Antarctica, though most were concentrated in North America and Africa; indeed, only one simulation model with no associated data was derived from an Asian bat-virus system. In fact, of the twenty-five models identified, only ten population-level models were fitted to data - emphasizing an overall dearth of empirically derived epidemiological inference in bat virus systems. Within the data fitted subset, the vast majority of models were fitted to serological data only, highlighting extensive uncertainty in our understanding of the transmission status of a wild bat. Here, we discuss similarities and differences in the approach and findings of previously published bat virus models and make recommendations for improvement in future work.


Subject(s)
COVID-19/virology , Chiroptera/virology , Disease Reservoirs/virology , SARS-CoV-2/physiology , Zoonoses/virology , Animals , COVID-19/transmission , Humans , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Zoonoses/transmission
6.
Methods Ecol Evol ; 11(5): 678-683, 2020 May.
Article in English | MEDLINE | ID: mdl-36466300

ABSTRACT

Species interactions and diversity are strongly impacted by local processes, with both the density of a focal species and its frequency in the community having an impact on its growth, survival and fecundity. Yet, studies that attempt to control for variation in both frequency and density have traditionally required a large number of replicates.Hexagonal fan designs can include a range of both densities and frequencies in a single plot, providing large economies in space and material for studying local interactions such as competition and disease transmission. However, in practice such experiments can be difficult to plan and implement.This study presents an R program whereby the user can rapidly view a variety of designs and determine the configurations that work best with their space and material constraints. Simple instructions for implementing the fan in any design setting are also provided.We illustrate the implementation of a simple form of the hexagonal fan design in a field experiment to assess the impact of host density on pollinator movement and disease transmission.

7.
J Appl Ecol ; 56(9): 2195-2205, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31588148

ABSTRACT

It is generally thought that the intensification of farming will result in higher disease prevalences, although there is little specific modelling testing this idea. Focussing on honeybees, we build multi-colony models to inform how "apicultural intensification" is predicted to impact honeybee pathogen epidemiology at the apiary scale.We used both agent-based and analytical models to show that three linked aspects of apicultural intensification (increased population sizes, changes in population network structure and increased between-colony transmission) are unlikely to greatly increase disease prevalence in apiaries. Principally this is because even low-intensity apiculture exhibits high disease prevalence.The greatest impacts of apicultural intensification are found for diseases with relatively low R0 (basic reproduction number), however, such diseases cause little overall disease prevalence and, therefore, the impacts of intensification are minor. Furthermore, the smallest impacts of intensification are for diseases with high R0 values, which we argue are typical of important honeybee diseases. Policy Implications: Our findings contradict the idea that apicultural intensification by crowding honeybee colonies in large, dense apiaries leads to notably higher disease prevalences for established honeybee pathogens. More broadly, our work demonstrates the need for informative models of all agricultural systems and management practices in order to understand the implications of management changes on diseases.

8.
Philos Trans R Soc Lond B Biol Sci ; 374(1781): 20180211, 2019 09 16.
Article in English | MEDLINE | ID: mdl-31352885

ABSTRACT

The emergence and spread of infections can contribute to the decline and extinction of populations, particularly in conjunction with anthropogenic environmental change. The importance of heterogeneity in processes of transmission, resistance and tolerance is increasingly well understood in theory, but empirical studies that consider both the demographic and behavioural implications of infection are scarce. Non-random mixing of host individuals can impact the demographic thresholds that determine the amplification or attenuation of disease prevalence. Risk assessment and management of disease in threatened wildlife populations must therefore consider not just host density, but also the social structure of host populations. Here we integrate the most recent developments in epidemiological research from a demographic and social network perspective, and synthesize the latest developments in social network modelling for wildlife disease, to explore their applications to disease management in populations in decline and at risk of extinction. We use simulated examples to support our key points and reveal how disease-management strategies can and should exploit both behavioural and demographic information to prevent or control the spread of disease. Our synthesis highlights the importance of considering the combined impacts of demographic and behavioural processes in epidemics to successful disease management in a conservation context. This article is part of the theme issue 'Linking behaviour to dynamics of populations and communities: application of novel approaches in behavioural ecology to conservation'.


Subject(s)
Animals, Wild , Communicable Disease Control/methods , Communicable Diseases/veterinary , Conservation of Natural Resources/methods , Population Dynamics , Social Behavior , Animals , Models, Biological
9.
Epidemics ; 27: 52-58, 2019 06.
Article in English | MEDLINE | ID: mdl-30745241

ABSTRACT

The industrialization of farming has had an enormous impact. To most, this impact is viewed solely in the context of productivity, but the denser living conditions and shorter rearing periods of industrial livestock farms provide pathogens with an ideal opportunity to spread and evolve. For example, the industrialization of poultry farms drove the Marek's disease virus (MDV) to evolve from a mild paralytic syndrome to a highly contagious, globally prevalent, deadly disease. Fortunately, the economic catastrophe that would occur from MDV evolution is prevented through the widespread use of live imperfect vaccines that limit disease symptoms, but fail to prevent transmission. Unfortunately, the continued rollout of such imperfect vaccines is steering MDV evolution towards even greater virulence, and the ability to evade vaccine protection. Thus, there is a need to investigate alternative economically viable control measures for their ability to inhibit MDV spread and evolution. In what follows we examine the economic viability of standard husbandry practices for their ability to inhibit the spread of both virulent MDV and very virulent MDV throughout an industrialized egg farm. To do this, we parameterize a MDV transmission model and calculate the loss in egg production due to MDV. We find that MDV strain and the cohort duration have the greatest influence on both disease burden and egg production. Additionally, our findings show that for long cohort durations, conventional cages result in the least per capita loss in egg production due to MDV infection, while Aviary systems perform best over shorter cohort durations. Finally, we find that the least per capita loss in egg production for flocks infected with the more virulent MDV strains occurs when cohort durations are sufficiently short. These results highlight the important decisions that managers will face when implementing new hen husbandry practices.


Subject(s)
Chickens/virology , Eggs/virology , Food Industry/methods , Marek Disease/prevention & control , Animals , Virulence
10.
Ecol Evol ; 8(23): 12044-12055, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30598798

ABSTRACT

Population structure is critical to infectious disease transmission. As a result, theoretical and empirical contact network models of infectious disease spread are increasingly providing valuable insights into wildlife epidemiology. Analyzing an exceptionally detailed dataset on contact structure within a high-density population of European badgers Meles meles, we show that a modular contact network produced by spatially structured stable social groups, lead to smaller epidemics, particularly for infections with intermediate transmissibility. The key advance is that we identify considerable variation among individuals in their role in disease spread, with these new insights made possible by the detail in the badger dataset. Furthermore, the important impacts on epidemiology are found even though the modularity of the Badger network is much lower than the threshold that previous work suggested was necessary. These findings reveal the importance of stable social group structure for disease dynamics with important management implications for socially structured populations.

11.
Evol Appl ; 10(2): 189-198, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28127395

ABSTRACT

Farming practices have changed dramatically over the years. The industrialization of farming has provided parasites with an abundance of hosts and is thought to have influenced parasite evolution. For example, the parasite that causes the highly contagious poultry disease, Marek's disease, has evolved over the past 60 years into a highly virulent pathogen. It is assumed that the industrialization of the industry and vaccination have selected for more virulent strains of the virus. Here, with the use of an impulsive differential equation model, we investigate how modern broiler farm practices could independently lead to virulence evolution. Our model suggests that longer cohort durations and more densely stocked barns both select for less virulent strains of the virus. Our model also suggests that if intensive cleaning between cohorts does not rid the barn of disease, it may drive evolution and cause the disease to become more virulent.

12.
J Math Biol ; 73(4): 885-902, 2016 10.
Article in English | MEDLINE | ID: mdl-26898368

ABSTRACT

Many modern farms exhibit all-in-all-out dynamics in which entire cohorts of livestock are removed from a farm before a new cohort is introduced. This industrialization has enabled diseases to spread rapidly within farms. Here we look at one such example, Marek's disease. Marek's disease is an economically important disease of poultry. The disease is transmitted indirectly, enabling the spread of disease between cohorts of chickens who have never come into physical contact. We develop a model which allows us to track the transmission of disease within a barn and between subsequent cohorts of chickens occupying the barn. It is described by a system of impulsive differential equations. We determine the conditions that lead to disease eradication. For a given level of transmission we find that disease eradication is possible if the cohort length is short enough and/or the cohort size is small enough. Marek's disease can also be eradicated from a farm if the cleaning effort between cohorts is large enough. Importantly complete cleaning is not required for eradication and the threshold cleaning effort needed declines as both cohort duration and size decrease.


Subject(s)
Disease Eradication/statistics & numerical data , Farms/statistics & numerical data , Marek Disease/prevention & control , Models, Biological , Animals , Chickens , Marek Disease/epidemiology , Marek Disease/transmission , Population Density
13.
Parasitology ; 143(7): 915-930, 2016 06.
Article in English | MEDLINE | ID: mdl-26302775

ABSTRACT

Why is it that some parasites cause high levels of host damage (i.e. virulence) whereas others are relatively benign? There are now numerous reviews of virulence evolution in the literature but it is nevertheless still difficult to find a comprehensive treatment of the theory and data on the subject that is easily accessible to non-specialists. Here we attempt to do so by distilling the vast theoretical literature on the topic into a set of relatively few robust predictions. We then provide a comprehensive assessment of the available empirical literature that tests these predictions. Our results show that there have been some notable successes in integrating theory and data but also that theory and empiricism in this field do not 'speak' to each other very well. We offer a few suggestions for how the connection between the two might be improved.


Subject(s)
Biological Evolution , Host-Parasite Interactions , Models, Biological , Parasites/pathogenicity , Virulence , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...