Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropeptides ; 51: 75-81, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25963531

ABSTRACT

Chronic stress, whether associated with obesity or not, leads to different neuroendocrine and psychological changes. Obesity or being overweight has become one of the most serious worldwide public health problems. Additionally, it is related to a substantial increase in daily energy intake, which results in substituting nutritionally adequate meals for snacks. This metabolic disorder can lead to morbidity, mortality, and reduced quality of life. On the other hand, brain-derived neurotrophic factor (BDNF) is widely expressed in all brain regions, particularly in the hypothalamus, where it has important effects on neuroprotection, synaptic plasticity, mammalian food intake-behavior, and energy metabolism. BDNF is involved in many activities modulated by the hypothalamic-pituitary-adrenal (HPA) axis. Therefore, this study aims to evaluate the effect of obesity associated with chronic stress on the BDNF central levels of rats. Obesity was controlled by analyzing the animals' caloric intake and changes in body weight. As a stress parameter, we analyzed the relative adrenal gland weight. We found that exposure to chronic restraint stress during 12 weeks increases the adrenal gland weight, decreases the BDNF levels in the hippocampus and is associated with a decrease in the calorie and sucrose intake, characterizing anhedonia. These effects can be related stress, a phenomenon that induces depression-like behavior. On the other hand, the rats that received the hypercaloric diet had an increase in calorie intake and became obese, which was associated with a decrease in hypothalamus BDNF levels.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Diet , Energy Intake/physiology , Hippocampus/metabolism , Stress, Physiological/physiology , Stress, Psychological/metabolism , Anhedonia , Animals , Behavior, Animal/physiology , Hypothalamo-Hypophyseal System/metabolism , Male , Obesity/metabolism , Pituitary-Adrenal System/metabolism , Rats , Rats, Wistar
2.
Neurochem Res ; 38(3): 494-503, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23224818

ABSTRACT

It is know that repeated exposure to opiates impairs spatial learning and memory and that the hippocampus has important neuromodulatory effects after drug exposure and withdrawal symptoms. Thus, the aim of this investigation was to assess hippocampal levels of BDNF, oxidative stress markers associated with cell viability, and TNF-α in the short, medium and long term after repeated morphine treatment in early life. Newborn male Wistar rats received subcutaneous injections of morphine (morphine group) or saline (control group), 5 µg in the mid-scapular area, starting on postnatal day 8 (P8), once daily for 7 days, and neurochemical parameters were assessed in the hippocampus on postnatal days 16 (P16), 30 (P30), and 60 (P60). For the first time, we observed that morphine treatment in early life modulates BDNF levels in the medium and long term and also modulates superoxide dismutase activity in the long term. In addition, it was observed effect of treatment and age in TNF-α levels, and no effects in lactate dehydrogenase levels, or cell viability. These findings show that repeated morphine treatment in the neonatal period can lead to long-lasting neurochemical changes in the hippocampus of male rats, and indicate the importance of cellular and intracellular adaptations in the hippocampus after early-life opioid exposure to tolerance, withdrawal and addiction.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Hippocampus/drug effects , Morphine/pharmacology , Superoxide Dismutase/metabolism , Animals , Animals, Newborn , Cell Survival/drug effects , Hippocampus/metabolism , Hydrogen Peroxide/pharmacology , L-Lactate Dehydrogenase/metabolism , Male , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/metabolism
3.
Peptides ; 38(1): 189-96, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22940203

ABSTRACT

Obesity is a disease that has become a serious public health issue worldwide, and chronic stressors, which are a problem for modern society, cause neuroendocrine changes with alterations in food intake. Obesity and chronic stress are associated with the development of cardiovascular diseases and metabolic disorders. In this study, a rat model was used to evaluate the effects of a hypercaloric diet plus chronic restraint stress on the serum leptin and lipids levels and on the weight of specific adipose tissue (mesenteric, MAT; subcutaneous, SAT and visceral, VAT). Wistar rats were divided into the following 4 groups: standard chow (C), hypercaloric diet (HD), stress plus standard chow (S), and stress plus hypercaloric diet (SHD). The animals in the stress groups were subjected to chronic stress (placed inside a 25 cm × 7 cm plastic tube for 1h per day, 5 days per week for 6 weeks). The following parameters were evaluated: the weight of the liver, adrenal glands and specific adipose tissue; the delta weight; the Lee index; and the serum levels of leptin, corticosterone, glucose, total cholesterol, and triglycerides. The hypercaloric diet induced obesity in rats, increasing the Lee index, weight, leptin, triglycerides, and cholesterol levels. The stress decreased weight gain even in animals fed a hypercaloric diet but did not prevent a significant increase in the Lee index. However, an interaction between the independent factors (hypercaloric diet and stress) was observed, which is demonstrated by the increased serum leptin levels in the animals exposed to both protocols.


Subject(s)
Adipose Tissue/metabolism , Diet/adverse effects , Leptin/blood , Obesity/etiology , Animals , Body Weight/drug effects , Corticosterone/blood , Disease Models, Animal , Energy Intake , Lipids/blood , Lipoproteins, HDL/blood , Lipoproteins, LDL/blood , Liver/drug effects , Obesity/blood , Organ Size/drug effects , Rats , Rats, Wistar , Restraint, Physical , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...