Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 16(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38674935

ABSTRACT

Short-term protein-calorie dietary restriction (StDR) is a promising preoperative strategy for modulating postoperative inflammation. We have previously shown marked gut microbial activity during StDR, but relationships between StDR, the gut microbiome, and systemic immunity remain poorly understood. Mucosal-associated invariant T-cells (MAITs) are enriched on mucosal surfaces and in circulation, bridge innate and adaptive immunity, are sensitive to gut microbial changes, and may mediate systemic responses to StDR. Herein, we characterized the MAIT transcriptomic response to StDR using single-cell RNA sequencing of human PBMCs and evaluated gut microbial species-level changes through sequencing of stool samples. Healthy volunteers underwent 4 days of DR during which blood and stool samples were collected before, during, and after DR. MAITs composed 2.4% of PBMCs. More MAIT genes were differentially downregulated during DR, particularly genes associated with MAIT activation (CD69), regulation of pro-inflammatory signaling (IL1, IL6, IL10, TNFα), and T-cell co-stimulation (CD40/CD40L, CD28), whereas genes associated with anti-inflammatory IL10 signaling were upregulated. Stool analysis showed a decreased abundance of multiple MAIT-stimulating Bacteroides species during DR. The analyses suggest that StDR potentiates an anti-inflammatory MAIT immunophenotype through modulation of TCR-dependent signaling, potentially secondary to gut microbial species-level changes.


Subject(s)
Caloric Restriction , Gastrointestinal Microbiome , Mucosal-Associated Invariant T Cells , Humans , Mucosal-Associated Invariant T Cells/immunology , Male , Adult , Female , Feces/microbiology , Inflammation/immunology , Young Adult , Healthy Volunteers , Transcriptome
2.
Nutrients ; 14(14)2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35889742

ABSTRACT

Short-term dietary restriction has been proposed as an intriguing pre-operative conditioning strategy designed to attenuate the surgical stress response and improve outcomes. However, it is unclear how this nutritional intervention influences the microbiome, which is known to modulate the systemic condition. Healthy individuals were recruited to participate in a four-day, 70% protein-restricted, 30% calorie-restricted diet, and stool samples were collected at baseline, after the restricted diet, and after resuming normal food intake. Taxonomy and functional pathway analysis was performed via shotgun metagenomic sequencing, prevalence filtering, and differential abundance analysis. High prevalence species were altered by the dietary intervention but quickly returned to baseline after restarting a regular diet. Composition and functional changes after the restricted diet included the decreased relative abundance of commensal bacteria and a catabolic phenotype. Notable species changes included Faecalibacterium prausnitzii and Roseburia intestinalis, which are major butyrate producers within the colon and are characteristically decreased in many disease states. The macronutrient components of the diet might have influenced these changes. We conclude that short-term dietary restriction modulates the ecology of the gut microbiome, with this modulation being characterized by a relative dysbiosis.


Subject(s)
Gastrointestinal Microbiome , Bacteria/genetics , Bacteria/metabolism , Diet, Protein-Restricted , Dysbiosis , Feces/microbiology , Humans , Metagenome
3.
J R Soc Interface ; 19(188): 20210871, 2022 03.
Article in English | MEDLINE | ID: mdl-35350882

ABSTRACT

In-stent restenosis (ISR) is a maladaptive inflammatory-driven response of femoral arteries to percutaneous transluminal angioplasty and stent deployment, leading to lumen re-narrowing as consequence of excessive cellular proliferative and synthetic activities. A thorough understanding of the underlying mechanobiological factors contributing to ISR is still lacking. Computational multiscale models integrating both continuous- and agent-based approaches have been identified as promising tools to capture key aspects of the complex network of events encompassing molecular, cellular and tissue response to the intervention. In this regard, this work presents a multiscale framework integrating the effects of local haemodynamics and monocyte gene expression data on cellular dynamics to simulate ISR mechanobiological processes in a patient-specific model of stented superficial femoral artery. The framework is based on the coupling of computational fluid dynamics simulations (haemodynamics module) with an agent-based model (ABM) of cellular activities (tissue remodelling module). Sensitivity analysis and surrogate modelling combined with genetic algorithm optimization were adopted to explore the model behaviour and calibrate the ABM parameters. The proposed framework successfully described the patient lumen area reduction from baseline to one-month follow-up, demonstrating the potential capabilities of this approach in predicting the short-term arterial response to the endovascular procedure.


Subject(s)
Coronary Restenosis , Femoral Artery , Constriction, Pathologic , Gene Expression , Hemodynamics , Humans
4.
Ann Biomed Eng ; 49(9): 2349-2364, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33928465

ABSTRACT

In-stent restenosis (ISR) represents a major drawback of stented superficial femoral arteries (SFAs). Motivated by the high incidence and limited knowledge of ISR onset and development in human SFAs, this study aims to (i) analyze the lumen remodeling trajectory over 1-year follow-up period in human stented SFAs and (ii) investigate the impact of altered hemodynamics on ISR initiation and progression. Ten SFA lesions were reconstructed at four follow-ups from computed tomography to quantify the lumen area change occurring within 1-year post-intervention. Patient-specific computational fluid dynamics simulations were performed at each follow-up to relate wall shear stress (WSS) based descriptors with lumen remodeling. The largest lumen remodeling was found in the first post-operative month, with slight regional-specific differences (larger inward remodeling in the fringe segments, p < 0.05). Focal re-narrowing frequently occurred after 6 months. Slight differences in the lumen area change emerged between long and short stents, and between segments upstream and downstream from stent overlapping portions, at specific time intervals. Abnormal patterns of multidirectional WSS were associated with lumen remodeling within 1-year post-intervention. This longitudinal study gave important insights into the dynamics of ISR and the impact of hemodynamics on ISR progression in human SFAs.


Subject(s)
Constriction, Pathologic/physiopathology , Femoral Artery/pathology , Femoral Artery/physiopathology , Stents/adverse effects , Aged , Hemodynamics , Humans , Hydrodynamics , Male , Middle Aged , Patient-Specific Modeling
5.
Sci Rep ; 11(1): 1613, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33452294

ABSTRACT

In-stent restenosis (ISR) is the major drawback of superficial femoral artery (SFA) stenting. Abnormal hemodynamics after stent implantation seems to promote the development of ISR. Accordingly, this study aims to investigate the impact of local hemodynamics on lumen remodeling in human stented SFA lesions. Ten SFA models were reconstructed at 1-week and 1-year follow-up from computed tomography images. Patient-specific computational fluid dynamics simulations were performed to relate the local hemodynamics at 1-week, expressed in terms of time-averaged wall shear stress (TAWSS), oscillatory shear index and relative residence time, with the lumen remodeling at 1-year, quantified as the change of lumen area between 1-week and 1-year. The TAWSS was negatively associated with the lumen area change (ρ = - 0.75, p = 0.013). The surface area exposed to low TAWSS was positively correlated with the lumen area change (ρ = 0.69, p = 0.026). No significant correlations were present between the other hemodynamic descriptors and lumen area change. The low TAWSS was the best predictive marker of lumen remodeling (positive predictive value of 44.8%). Moreover, stent length and overlapping were predictor of ISR at follow-up. Despite the limited number of analyzed lesions, the overall findings suggest an association between abnormal patterns of WSS after stenting and lumen remodeling.


Subject(s)
Atrial Remodeling , Femoral Artery/physiology , Hemodynamics , Peripheral Arterial Disease/surgery , Stents , Aged , Computer Simulation , Constriction, Pathologic/surgery , Femoral Artery/diagnostic imaging , Femoral Artery/surgery , Follow-Up Studies , Humans , Logistic Models , Middle Aged , Shear Strength , Spatial Analysis , Stents/adverse effects , Time Factors , Tomography, X-Ray Computed
6.
Circ Genom Precis Med ; 11(3): e001970, 2018 03.
Article in English | MEDLINE | ID: mdl-29530886

ABSTRACT

BACKGROUND: Despite being the definitive treatment for lower extremity peripheral arterial disease, vein bypass grafts fail in half of all cases. Early repair mechanisms after implantation, governed largely by the immune environment, contribute significantly to long-term outcomes. The current study investigates the early response patterns of circulating monocytes as a determinant of graft outcome. METHODS: In 48 patients undergoing infrainguinal vein bypass grafting, the transcriptomes of circulating monocytes were analyzed preoperatively and at 1, 7, and 28 days post-operation. RESULTS: Dynamic clustering algorithms identified 50 independent gene response patterns. Three clusters (64 genes) were differentially expressed, with a hyperacute response pattern defining those patients with failed versus patent grafts 12 months post-operation. A second independent data set, comprised of 96 patients subjected to major trauma, confirmed the value of these 64 genes in predicting an uncomplicated versus complicated recovery. Causal network analysis identified 8 upstream elements that regulate these mediator genes, and Bayesian analysis with a priori knowledge of the biological interactions was integrated to create a functional network describing the relationships among the regulatory elements and downstream mediator genes. Linear models predicted the removal of either STAT3 (signal transducer and activator of transcription 3) or MYD88 (myeloid differentiation primary response 88) to shift mediator gene expression levels toward those seen in successful grafts. CONCLUSIONS: A novel combination of dynamic gene clustering, linear models, and Bayesian network analysis has identified a core set of regulatory genes whose manipulations could migrate vein grafts toward a more favorable remodeling phenotype.


Subject(s)
Arteries/surgery , Lower Extremity/blood supply , Monocytes/metabolism , Aged , Angioplasty , Bayes Theorem , Cluster Analysis , Female , Gene Expression Regulation , Gene Regulatory Networks/genetics , Humans , Male , Middle Aged , Monocytes/cytology , Myeloid Differentiation Factor 88/genetics , Peripheral Vascular Diseases/therapy , Phenotype , Prospective Studies , RNA/genetics , RNA/isolation & purification , RNA/metabolism , STAT3 Transcription Factor/genetics , Treatment Failure
SELECTION OF CITATIONS
SEARCH DETAIL
...