Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38731994

ABSTRACT

The mechanism of ethylene (ET)-regulated salinity stress response remains largely unexplained, especially for semi-halophytes and halophytes. Here, we present the results of the multifaceted analysis of the model semi-halophyte Mesembryanthemum crystallinum L. (common ice plant) ET biosynthesis pathway key components' response to prolonged (14 days) salinity stress. Transcriptomic analysis revealed that the expression of 3280 ice plant genes was altered during 14-day long salinity (0.4 M NaCl) stress. A thorough analysis of differentially expressed genes (DEGs) showed that the expression of genes involved in ET biosynthesis and perception (ET receptors), the abscisic acid (ABA) catabolic process, and photosynthetic apparatus was significantly modified with prolonged stressor presence. To some point this result was supported with the expression analysis of the transcript amount (qPCR) of key ET biosynthesis pathway genes, namely ACS6 (1-aminocyclopropane-1-carboxylate synthase) and ACO1 (1-aminocyclopropane-1-carboxylate oxidase) orthologs. However, the pronounced circadian rhythm observed in the expression of both genes in unaffected (control) plants was distorted and an evident downregulation of both orthologs' was induced with prolonged salinity stress. The UPLC-MS analysis of the ET biosynthesis pathway rate-limiting semi-product, namely of 1-aminocyclopropane-1-carboxylic acid (ACC) content, confirmed the results assessed with molecular tools. The circadian rhythm of the ACC production of NaCl-treated semi-halophytes remained largely unaffected by the prolonged salinity stress episode. We speculate that the obtained results represent an image of the steady state established over the past 14 days, while during the first hours of the salinity stress response, the view could be completely different.


Subject(s)
Ethylenes , Gene Expression Regulation, Plant , Salt Stress , Salt-Tolerant Plants , Ethylenes/biosynthesis , Ethylenes/metabolism , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/metabolism , Mesembryanthemum/metabolism , Mesembryanthemum/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Biosynthetic Pathways , Gene Expression Profiling/methods , Abscisic Acid/metabolism , Salinity , Transcriptome
2.
Microb Ecol ; 87(1): 50, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38466433

ABSTRACT

Intensive crop production leads to the disruption of the symbiosis between plants and their associated microorganisms, resulting in suboptimal plant productivity and lower yield quality. Therefore, it is necessary to improve existing methods and explore modern, environmentally friendly approaches to crop production. One of these methods is biotization, which involves the inoculation of plants with appropriately selected symbiotic microorganisms which play a beneficial role in plant adaptation to the environment. In this study, we tested the possibility of using a multi-microorganismal inoculum composed of arbuscular mycorrhizal fungi (AMF) and AMF spore-associated bacteria for biotization of the red raspberry. Bacteria were isolated from the spores of AMF, and their plant growth-promoting properties were tested. AMF inocula were supplemented with selected bacterial strains to investigate their effect on the growth and vitality of the raspberry. The investigations were carried out in the laboratory and on a semi-industrial scale in a polytunnel where commercial production of seedlings is carried out. In the semi-industrial experiment, we tested the growth parameters of plants and physiological response of the plant to temporary water shortage. We isolated over fifty strains of bacteria associated with spores of AMF. Only part of them showed plant growth-promoting properties, and six of these (belonging to the Paenibacillus genus) were used for the inoculum. AMF inoculation and co-inoculation of AMF and bacteria isolated from AMF spores improved plant growth and vitality in both experimental setups. Plant dry weight was improved by 70%, and selected chlorophyll fluorescence parameters (the contribution of light to primary photochemistry and fraction of reaction centre chlorophyll per chlorophyll of the antennae) were increased. The inoculum improved carbon assimilation, photosynthetic rate, stomatal conductance and transpiration after temporary water shortage. Raspberry biotization with AMF and bacteria associated with spores has potential applications in horticulture where ecological methods based on plant microorganism interaction are in demand.


Subject(s)
Mycorrhizae , Rubus , Mycorrhizae/physiology , Spores, Fungal , Plants/microbiology , Bacteria , Chlorophyll , Water
4.
Cells ; 12(11)2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37296672

ABSTRACT

The aim of this study was to examine the effect of the modified light spectrum of glass containing red luminophore on the performance of the photosynthetic apparatus of two types of lettuce cultivated in soil in a greenhouse. Butterhead and iceberg lettuce were cultivated in two types of greenhouses: (1) covered with transparent glass (control) and (2) covered with glass containing red luminophore (red). After 4 weeks of culture, structural and functional changes in the photosynthetic apparatus were examined. The presented study indicated that the red luminophore used changed the sunlight spectrum, providing an adequate blue:red light ratio, while decreasing the red:far-red radiation ratio. In such light conditions, changes in the efficiency parameters of the photosynthetic apparatus, modifications in the chloroplast ultrastructure, and altered proportions of structural proteins forming the photosynthetic apparatus were observed. These changes led to a decrease of CO2 carboxylation efficiency in both examined lettuce types.


Subject(s)
Chlorophyll , Photosynthesis , Chlorophyll/metabolism , Light , Chloroplasts/metabolism , Photosystem II Protein Complex/metabolism , Lactuca/metabolism
5.
Environ Microbiol ; 25(12): 2913-2930, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37127295

ABSTRACT

Microorganisms play a key role in plant adaptation to the environment. The aim of this study was to evaluate the effect of toxic metals present in the soil on the biodiversity of plant-related, endophytic mycobiota. The mycobiome of plants and soil from a Zn-Pb heap and a metal-free ruderal area were compared via Illumina sequencing of the ITS1 rDNA. The biodiversity of plants and fungi inhabiting mine dump substrate was lower than that of the metal free site. In the endosphere of Arabidopsis arenosa from the mine dump the number of endophytic fungal taxa was comparable to that in the reference population, but the community structure significantly differed. Agaricomycetes was the most notably limited class of fungi. The results of plant mycobiota evaluation from the field study were verified in terms of the role of toxic metals in plant endophytic fungi community assembly in a reconstruction experiment. The results presented in this study indicate that metal toxicity affects the structure of the plant mycobiota not by changing the pool of microorganisms available in the soil from which the fungal symbionts are recruited but most likely by altering plant and fungi behaviour and the organisms' preferences towards associating in symbiotic relationships.


Subject(s)
Arabidopsis , Mycobiome , Metals , Fungi , Arabidopsis/microbiology , Soil , Soil Microbiology
6.
Sci Total Environ ; 870: 161887, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-36731550

ABSTRACT

The endophytic Basidiomycete Sporobolomyces ruberrimus protects its host Arabidopsis arenosa against metal toxicity. Plants inoculated with the fungus yielded more biomass and exhibited significantly fewer stress symptoms in medium mimicking mine dump conditions (medium supplemented with excess of Fe, Zn and Cd). Aside from fine-tuning plant metal homeostasis, the fungus was capable of precipitating Fe in the medium, most likely limiting host exposure to metal toxicity. The precipitated residue was identified by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-Ray Diffraction (XRD) and electron microscopy (SEM/TEM) with energy dispersive X-Ray analysis (EDX/SAED) techniques. The performed analyses revealed that the fungus transforms iron into amorphous (oxy)hydroxides and phosphates and immobilizes them in the form of a precipitate changing Fe behaviour in the MSR medium. Moreover, the complexation of free Fe ions by fungi could be obtained by biomolecules such as lipids, proteins, or biosynthesized redox-active molecules.


Subject(s)
Arabidopsis , Basidiomycota , Iron/toxicity , Iron/chemistry , Metals , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
7.
Plant Cell Environ ; 46(1): 268-287, 2023 01.
Article in English | MEDLINE | ID: mdl-36286193

ABSTRACT

Toxic metal pollution requires significant adjustments in plant metabolism. Here, we show that the plant microbiota plays an important role in this process. The endophytic Sporobolomyces ruberrimus isolated from a serpentine population of Arabidopsis arenosa protected plants against excess metals. Coculture with its native host and Arabidopsis thaliana inhibited Fe and Ni uptake. It had no effect on host Zn and Cd uptake. Fe uptake inhibition was confirmed in wheat and rape. Our investigations show that, for the metal inhibitory effect, the interference of microorganisms in plant ethylene homeostasis is necessary. Application of an ethylene synthesis inhibitor, as well as loss-of-function mutations in canonical ethylene signalling genes, prevented metal uptake inhibition by the fungus. Coculture with S. ruberrimus significantly changed the expression of Fe homeostasis genes: IRT1, OPT3, OPT6, bHLH38 and bHLH39 in wild-type (WT) A. thaliana. The expression pattern of these genes in WT plants and in the ethylene signalling defective mutants significantly differed and coincided with the plant accumulation phenotype. Most notably, down-regulation of the expression of IRT1 solely in WT was necessary for the inhibition of metal uptake in plants. This study shows that microorganisms optimize plant Fe and Ni uptake by fine-tuning plant metal homeostasis.


Subject(s)
Saccharomyces cerevisiae
8.
Appl Microbiol Biotechnol ; 106(12): 4775-4786, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35729273

ABSTRACT

Ecological methods are becoming increasingly popular. One of these methods is plant biotization. In our paper, we focus on selection of Vaccinium corymbosum hairy root-inhabiting fungi for plant growth promotion in a single microorganism inoculation setup and then composed a multiorganismal inoculum enriched with a representative of another group of fungi, leaf endophytes. The hairy roots of V. corymbosum hosted 13 fungal taxa. In single inoculation of the plant with fungal strains, the most beneficial for plant growth were Oidiodendron maius and Phialocephala fortinii. Additional inoculation of the plants with three root symbiotic fungi (O. maius, Hymenoscyphus sp. and P. fortinii) and with the endophytic fungus Xylaria sp. increased plant height in laboratory experiments. On a semi-industrial scale, inoculation improved plant biomass and vitality. Therefore, the amendment of root-associated fungal communities with a mixture of ericoid mycorrhizal and endophytic fungi may represent an alternative to conventional fertilization and pesticide application in large-scale blueberry production. KEY POINTS: • O. maius and P. fortinii significantly stimulated V. corymbosum growth in a single inoculation. • Multimicroorganismal inoculum increased plant biomass and vitality. • Blueberry biotization with ericoid and endophytic fungi is recommended.


Subject(s)
Blueberry Plants , Mycorrhizae , Blueberry Plants/microbiology , Endophytes , Fungi/genetics , Plant Roots/microbiology , Plants , Symbiosis
9.
Int J Mol Sci ; 22(16)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34445127

ABSTRACT

The common ice plant (Mesembryanthemum crystallinum L.) is a facultative crassulacean acid metabolism (CAM) plant, and its ability to recover from stress-induced CAM has been confirmed. We analysed the photosynthetic metabolism of this plant during the 72-h response period following salinity stress removal from three perspectives. In plants under salinity stress (CAM) we found a decline of the quantum efficiencies of PSII (Y(II)) and PSI (Y(I)) by 17% and 15%, respectively, and an increase in nonphotochemical quenching (NPQ) by almost 25% in comparison to untreated control. However, 48 h after salinity stress removal, the PSII and PSI efficiencies, specifically Y(II) and Y(I), elevated nonphotochemical quenching (NPQ) and donor side limitation of PSI (YND), were restored to the level observed in control (C3 plants). Swelling of the thylakoid membranes, as well as changes in starch grain quantity and size, have been found to be components of the salinity stress response in CAM plants. Salinity stress induced an over 3-fold increase in average starch area and over 50% decline of average seed number in comparison to untreated control. However, in plants withdrawn from salinity stress, during the first 24 h of recovery, we observed chloroplast ultrastructures closely resembling those found in intact (control) ice plants. Rapid changes in photosystem functionality and chloroplast ultrastructure were accompanied by the induction of the expression (within 24 h) of structural genes related to the PSI and PSII reaction centres, including PSAA, PSAB, PSBA (D1), PSBD (D2) and cp43. Our findings describe one of the most flexible photosynthetic metabolic pathways among facultative CAM plants and reveal the extent of the plasticity of the photosynthetic metabolism and related structures in the common ice plant.


Subject(s)
Crassulacean Acid Metabolism/genetics , Mesembryanthemum/genetics , Photosynthesis/genetics , Salt Stress/genetics , Chloroplasts/drug effects , Chloroplasts/genetics , Crassulacean Acid Metabolism/drug effects , Mesembryanthemum/drug effects , Photosynthesis/drug effects , Plastids/drug effects , Plastids/genetics , Salinity , Salt Stress/drug effects , Sodium Chloride/pharmacology , Starch/genetics , Thylakoids/drug effects , Thylakoids/genetics
10.
Sci Total Environ ; 789: 147950, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34082195

ABSTRACT

To improve the efficiency of Ni phytoextraction, the metal hyperaccumulator N. goesingensis was subject to treatment with a combination of a Ni uptake stimulating microorganism and the commercially available, IAA- based biostimulating seaweed extract - Kelpak. Additionally, we compared the plant growth promoting and Ni uptake capabilities of the two biofertilizers. Treatment with the Kelpak alone had no significant effect on plant growth or Ni accumulation. Inoculation of N. goesingensis with Phomopsis columnaris significantly improved the biomass of the hyperaccumulating plant and Ni yield per plant and improved several plant biometric features such as fresh and dry weight and several others related to leaf and root size. However, the combination of the two treatments yielded the best results; plants treated with the two growth promoting agents yielded 85% more biomass compared to not treated plants and accumulated 48% more Ni per plant. To verify plant inoculation with the fungus we generated a GFP expressing strain of P. columnaris and visualized the fungus in both plant leaves and roots. To trace the development of the fungus in planta and to evaluate the effect of biostimulant treatment on mycelium development fungal translational elongation factor 1α (tef1α) DNA was quantified with qPCR. Upon biofertilizer the abundance P. columnaris in plant leaves increased nearly 5-fold. The utilization of plant growth stimulating microorganisms, endophytic fungi in particular, can significantly improve Ni phytoextraction in hyperaccumulator N. goesingensis.


Subject(s)
Plant Growth Regulators , Soil Pollutants , Biodegradation, Environmental , Fungi , Plant Development , Plant Roots/chemistry , Soil Pollutants/analysis
11.
Int J Mol Sci ; 22(9)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33925054

ABSTRACT

A non-destructive thermal imaging method was used to study the stomatal response of salt-treated Arabidopsis thaliana plants to excessive light. The plants were exposed to different levels of salt concentrations (0, 75, 150, and 220 mM NaCl). Time-dependent thermograms showed the changes in the temperature distribution over the lamina and provided new insights into the acute light-induced temporary response of Arabidopsis under short-term salinity. The initial response of plants, which was associated with stomatal aperture, revealed an exponential growth in temperature kinetics. Using a single-exponential function, we estimated the time constants of thermal courses of plants exposed to acute high light. The saline-induced impairment in stomatal movement caused the reduced stomatal conductance and transpiration rate. Limited transpiration of NaCl-treated plants resulted in an increased rosette temperature and decreased thermal time constants as compared to the controls. The net CO2 assimilation rate decreased for plants exposed to 220 mM NaCl; in the case of 75 mM NaCl treatment, an increase was observed. A significant decline in the maximal quantum yield of photosystem II under excessive light was noticeable for the control and NaCl-treated plants. This study provides evidence that thermal imaging as a highly sensitive technique may be useful for analyzing the stomatal aperture and movement under dynamic environmental conditions.


Subject(s)
Arabidopsis/physiology , Arabidopsis/radiation effects , Thermography/methods , Arabidopsis/drug effects , Kinetics , Light , Osmotic Pressure , Photosystem II Protein Complex/drug effects , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/radiation effects , Plant Stomata/drug effects , Plant Stomata/physiology , Plant Stomata/radiation effects , Plant Transpiration/drug effects , Plant Transpiration/physiology , Plant Transpiration/radiation effects , Salinity , Sodium Chloride/administration & dosage , Stress, Physiological
12.
Int J Mol Sci ; 22(4)2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33671687

ABSTRACT

Our observations of predatory fungi trapping rotifers in activated sludge and laboratory culture allowed us to discover a complicated trophic network that includes predatory fungi armed with bacteria and bacteriophages and the rotifers they prey on. Such a network seems to be common in various habitats, although it remains mostly unknown due to its microscopic size. In this study, we isolated and identified fungi and bacteria from activated sludge. We also noticed abundant, virus-like particles in the environment. The fungus developed absorptive hyphae within the prey. The bacteria showed the ability to enter and exit from the hyphae (e.g., from the traps into the caught prey). Our observations indicate that the bacteria and the fungus share nutrients obtained from the rotifer. To narrow the range of bacterial strains isolated from the mycelium, the effects of bacteria supernatants and lysed bacteria were studied. Bacteria isolated from the fungus were capable of immobilizing the rotifer. The strongest negative effect on rotifer mobility was shown by a mixture of Bacillus sp. and Stenotrophomonas maltophilia. The involvement of bacteriophages in rotifer hunting was demonstrated based on molecular analyses and was discussed. The described case seems to be an extraordinary quadruple microbiological puzzle that has not been described and is still far from being understood.


Subject(s)
Bacillus Phages/physiology , Fungi/pathogenicity , Rotifera/microbiology , Animals , Bacillus/metabolism , Bacillus Phages/genetics , Bacteria , Chitinases/metabolism , Coculture Techniques , Microbial Consortia , Sewage/microbiology , Symbiosis , Waste Disposal, Fluid
13.
Sci Total Environ ; 768: 144666, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33736318

ABSTRACT

The role of endophytic fungi isolated from different populations of European Ni hyperaccumulators was investigated in regard to the microorganisms' ability to enhance the hyperaccumulation of Ni in Noccaea caerulescens. Effects of particular species of endophytic fungi on adaptation of N. caerulescens to excess Ni were tested by co-cultivation with single strains of the fungi. Seven of these had a positive effect on plant biomass production, whereas two of the tested species inhibited plant growth; biomass production of inoculated plants was significantly different compared to non-inoculated control. Inoculation with six fungal strains: Embellisia thlaspis, Pyrenochaeta cava, Phomopsis columnaris, Plectosphaerella cucumerina, Cladosporium cladosporioides and Alternaria sp. stimulated the plant to uptake and accumulate more Ni in both roots and shoots, compared to non-inoculated control. P. columnaris was isolated from all plant species sampled. Strains isolated from Noccaea caerulescens and Noccaea goesingensis increased Ni root and shoot accumulation of their native hosts (compared to non-inoculated control). Inoculation of different populations of Noccaea with P. columnaris of foreign origin did not cause its host to accumulate more Ni, with the exception of the Ni-unadapted ecotype of N. goesingensis. Inoculation with P. columnaris from N. caerulescens significantly improved Ni uptake, but the effect of the fungus was not as prominent as in the case of N. caerulescens. By comparing the transcriptomes of N. caerulescens and N. goesingensis from Flatz inoculated with P. columnaris, we showed that enhanced uptake and accumulation of Ni in the plants is accompanied by an upregulation of several genes mainly involved in plant stress protection and metal uptake and compartmentation.


Subject(s)
Brassicaceae , Nickel , Ascomycota , Cladosporium , Fungi
14.
Biochem Biophys Res Commun ; 533(4): 1129-1134, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33046242

ABSTRACT

Thermal imaging was used to study the early stage response to light-induced heating of Arabidopsis thaliana leaves. Time-series thermograms provided a spatial and temporal characterization of temperature changes in Arabidopsis wild type and the ost1-2 mutant rosettes exposed to excessive illumination. The initial response to high light, defined by the exponential increase in leaf temperature of ost1-2 gave an increased thermal time constant compared to wild type plants. The inability to regulate stomata in ost1-2 resulted in enhanced stomatal conductance and transpiration rate. Under strong irradiation, a significant decline in the efficiency of photosystem II was observed. This study evaluates infrared thermography kinetics and determines thermal time constants in particular, as an early and rapid method for diagnosing the prime indicators of light stress in plants under excessive light conditions.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Photosystem II Protein Complex/physiology , Plant Stomata/metabolism , Protein Kinases/metabolism , Thermography/methods , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Mutation , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/radiation effects , Plant Leaves/metabolism , Plant Leaves/physiology , Plant Leaves/radiation effects , Plant Stomata/physiology , Plant Stomata/radiation effects , Protein Kinases/genetics , Temperature
15.
Plants (Basel) ; 9(8)2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32731524

ABSTRACT

Root transcriptomic profile was comparatively studied in a serpentine (TM) and a non-metallicolous (NTM) population of Noccaea goesingensis in order to investigate possible features of Ni hyperaccumulation. Both populations were characterised by contrasting Ni tolerance and accumulation capacity. The growth of the TM population was unaffected by metal excess, while the shoot biomass production in the NTM population was significantly lower in the presence of Ni in the culture medium. Nickel concentration was nearly six- and two-fold higher in the shoots than in the roots of the TM and NTM population, respectively. The comparison of root transcriptomes using the RNA-seq method indicated distinct responses to Ni treatment between tested ecotypes. Among differentially expressed genes, the expression of IRT1 and IRT2, encoding metal transporters, was upregulated in the TM population and downregulated/unchanged in the NTM ecotype. Furthermore, differences were observed among ethylene metabolism and response related genes. In the TM population, the expression of genes including ACS7, ACO5, ERF104 and ERF105 was upregulated, while in the NTM population, expression of these genes remained unchanged, thus suggesting a possible regulatory role of this hormone in Ni hyperaccumulation. The present results could serve as a starting point for further studies concerning the plant mechanisms responsible for Ni tolerance and accumulation.

16.
Appl Microbiol Biotechnol ; 104(13): 5929-5941, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32468157

ABSTRACT

The ability to synthesize particular steviol glycosides (SvGls) was studied in Stevia rebaudiana Bertoni hairy roots (HR) grown in the light or in the dark under the influence of different osmotic active compounds. Manipulation of culture conditions led to changes in the morphology and growth rate of HR, as well as to an increase in oxidative stress manifested as an enhancement in endogenous hydrogen peroxide concentration in the cultured samples. The highest level of H2O2 was noted in HR cultured under light or in the medium with the highest osmotic potential. This correlated with the highest increase in the expression level of ent-kaurenoic acid hydroxylase, responsible for the redirection of metabolic route to SvGls biosynthesis pathway. An analysis of transcriptional activity of some UDPglucosyltransferase (UGT85c2, UGT74g1, UGT76g1) revealed that all of them were upregulated due to the manipulation of culture conditions. However, the level of their upregulation depended on the type of stress factor used in our experiment. Analysis of SvGls content revealed that HR grown under all applied conditions were able to synthesize and accumulate several SvGls but their concentration differed between the samples across the different conditions. The level of rebaudioside A concentration exceeded the content of stevioside in HR in all tested conditions. Concomitantly, the presence of some minor SvGls, such as steviolbioside and rebaudioside F, was confirmed only in HR cultured in the lowest osmotic potential of the medium while rebaudioside D was also detected in the samples cultured in the media supplemented with NaCl or PEG.Key Points● Several steviol glycosides are synthesized in hairy roots of S. rebaudiana.● Light or osmotic factors cause enhancement in oxidative stress level in hairy roots.● It correlates with a significant increase in the level of KAH expression.● UGTs expression and steviol glycosides content depends on culture conditions.


Subject(s)
Diterpenes, Kaurane/chemistry , Glucosides/chemistry , Oxidative Stress , Stevia/metabolism , Agrobacterium/genetics , Biosynthetic Pathways/genetics , Culture Media/chemistry , Diterpenes, Kaurane/metabolism , Gene Expression Regulation, Plant , Glucosides/metabolism , Glucosyltransferases/genetics , Light , Mixed Function Oxygenases/genetics , Osmotic Pressure , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Plants, Genetically Modified , Stevia/genetics , Stevia/growth & development
18.
J Basic Microbiol ; 59(1): 24-37, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30303545

ABSTRACT

The aim of this study was to assess the biodiversity of endophytic fungi from Arabidopsis arenosa growing on a post mining waste dump and to evaluate their role in plant adaptation to metal toxicity. Severeal of the fungi were beneficial for the plant. Among them, a fungus belonging to the Mucor genus, was found to interact with a broad range of plants, including Brassicaceae metallophytes. Mucor sp. was shown to be highly tolerant to elevated levels of Zn, Cd, and Pb and to accelerate plant-host growth under either toxic-metal stress or control conditions. When inoculated with Mucor sp., A. arenosa under toxic-metal stress acquired more N and showed significantly down-regulated catalase activity, which suggests suppression of toxic-metal-induced oxidative stress. We used the model plant-A. thaliana to evaluate the dynamics of plant-tissue colonization by the fungus as monitored with qPCR and to analyze the host's transcriptome response during early stages of the interaction. The results revealed the induction of a plant-defense and stress-related response on the 5th day of co-culture, which was in accord with the decrease of fungal abundance in shoots on the 6th day of interaction. Presented results demonstrate the importance of endophytic fungi in plant toxic-metal tolerance.


Subject(s)
Brassicaceae/drug effects , Brassicaceae/growth & development , Endophytes/drug effects , Endophytes/growth & development , Metals/toxicity , Mucor/drug effects , Mucor/growth & development , Arabidopsis/drug effects , Arabidopsis/growth & development , Arabidopsis/microbiology , Biodegradation, Environmental/drug effects , Brassicaceae/metabolism , Brassicaceae/microbiology , Cadmium/toxicity , Catalase/metabolism , Endophytes/isolation & purification , Endophytes/metabolism , Lead/toxicity , Metals/metabolism , Metals, Heavy/metabolism , Mucor/isolation & purification , Mucor/metabolism , Oxidative Stress , Plant Development/drug effects , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/microbiology , Plant Shoots/drug effects , Plant Shoots/metabolism , Plant Shoots/microbiology , Soil , Soil Pollutants/analysis , Zinc/toxicity
19.
Plant Cell Environ ; 42(4): 1408-1423, 2019 04.
Article in English | MEDLINE | ID: mdl-30516827

ABSTRACT

The role of an endophytic Zygomycete Mucor sp. in growth promotion and adaptation of the photosynthetic apparatus to increased energy demands of its hosts Arabidopsis arenosa and Arabidopsis thaliana was evaluated. Inoculation with the fungus improved the water use efficiency of the plants and allowed for them to utilize incident light for photochemistry more effectively by upregulating the expression of several photosystem I- and II-related genes and their respective proteins, proteins involved in light harvesting in PSII and PSI and carbon assimilation. This effect was independent of the ability of the plants to acquire nutrients from the soil. We hypothesize that the accelerated growth of the symbiotic plants resulted from an increase in their demand for carbohydrates and carbohydrate turnover (sink strength) that triggered a simultaneous upregulation of carbon assimilation. Arabidopsis plants inoculated with Mucor sp. exhibited upregulated expression in several genes encoding proteins involved in carbohydrate catabolism, sugar transport, and smaller starch grains that indicate a significant upregulation of carbohydrate metabolism.


Subject(s)
Adaptation, Physiological , Arabidopsis/microbiology , Carbohydrate Metabolism , Mucor , Photosynthesis , Plant Diseases/microbiology , Arabidopsis/metabolism , Arabidopsis/physiology , Blotting, Western , Chlorophyll/metabolism , Electrophoresis, Polyacrylamide Gel , Microscopy, Electron, Transmission , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Polymerase Chain Reaction
20.
J Plant Physiol ; 229: 151-157, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30092447

ABSTRACT

In Mesembryanthemum crystallinum, crassulacean acid metabolism (CAM) is seemingly reversible, but unequivocal evidence for functional CAM withdrawal has yet to be shown. In this study, we confirmed the rapid downregulation of PEPC1 expression just 1 h after the removal of NaCl from the plant growth media. At the same time, the Δ malate values in desalted plants rapidly (1 d) re-established to values typical for C3 plants. This phenomenon allowed us to confirm functional CAM withdrawal in the desalted plants. Desalting altered the expression of the genes of the main antioxidative enzymes and/or the activity of their respective proteins; for catalase (CAT), both gene expression and protein activity were restored to levels observed in C3 plants in response to desalting, while for cooper-zinc superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX), only protein activity was restored. Therefore, we conclude that during the C3→CAM transition the CAM-specific antioxidative enzyme activity profile constitutes a transient and fully reversible response to abiotic stress.


Subject(s)
Antioxidants/metabolism , Plant Proteins/metabolism , Ascorbate Peroxidases/metabolism , Catalase/metabolism , Gene Expression Regulation, Plant/drug effects , Sodium Chloride/pharmacology , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...