Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Pathol ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38705380

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a heterogeneous clinical syndrome that is most commonly triggered by infection-related inflammation. Lung pericytes can respond to infection and act as immune and proangiogenic cells; moreover, these cells can differentiate into myofibroblasts in nonresolving ARDS and contribute to the development of pulmonary fibrosis. Here, we aimed to characterize the role of lung cells, which present characteristics of pericytes, such as peri-endothelial location and expression of a panel of specific markers. To study their role in ARDS, we used a murine model of lipopolysaccharide (LPS)-induced resolving ARDS. We confirmed the development of ARDS after LPS instillation, which was resolved 14 days after onset. Using immunofluorescence and flow cytometry, we observed early expansion of neural-glial antigen 2+ ß-type platelet-derived growth factor receptor+ pericytes in murine lungs with loss of CD31+ ß-type platelet-derived growth factor receptor+ endothelial cells. These changes were accompanied by specific changes in lung structure and loss of vascular integrity. On day 14 after ARDS onset, the composition of pericytes and endothelial cells returned to baseline values. LPS-induced ARDS activated NOTCH signaling in lung pericytes, the inhibition of which during LPS stimulation reduced the expression of its downstream target genes, pericyte markers, and angiogenic factors. Together, lung pericytes in response to inflammatory injury activate NOTCH signaling that supports their maintenance and in turn can contribute to recovery of the microvascular endothelium.

2.
Postepy Hig Med Dosw (Online) ; 71(0): 186-197, 2017 Mar 13.
Article in English | MEDLINE | ID: mdl-28345526

ABSTRACT

Pericytes, which are multi-potential stem cells, co-create the walls of the microvessels: capillaries, terminal arterioles and postcapillary venules. These cells are localized under the basement membrane, tightly encircling the endothelium. The most frequently mentioned molecular markers of pericytes include NG2 (neural-glial antigen 2), ß-type platelet-derived growth factor receptor (PDGFRß), smooth muscle α-actin (α-SMA), regulator of G protein signalling 5 (RGS5), the adhesion protein CD146 and nestin. Different functions in physiological processes are assigned to pericytes such as maintaining the integrity and senescence of endothelial cells, transregulation of vascular tone or the potential to differentiate into other cells. Probably they are also involved in pathological processes such as tissues fibrosis. In this review, we focus on the participation of pericytes in the process of blood vessel formation, the regeneration of skeletal muscle tissue and fibrosis. Strong evidence for pericytes' participation in endothelial homeostasis, as well as in pathological conditions such as fibrosis, reveals a broad potential for the therapeutic use of these cells. Targeted pharmacological modulation of pericytes, leading to blocking signalling pathways responsible for the differentiation of pericytes into myofibroblasts, seems to be a promising strategy for the treatment of fibrosis in the early stages.


Subject(s)
Mesenchymal Stem Cells/physiology , Pericytes/physiology , Pericytes/transplantation , Actins/metabolism , Animals , Biomarkers/metabolism , Cell Differentiation , Endothelial Cells/metabolism , Humans , Regeneration , Stem Cells/physiology
3.
Stem Cells Dev ; 25(20): 1513-1531, 2016 10.
Article in English | MEDLINE | ID: mdl-27460260

ABSTRACT

Cell-based gene therapy holds a great promise for the treatment of human malignancy. Among different cells, mesenchymal stem cells (MSCs) are emerging as valuable anti-cancer agents that have the potential to be used to treat a number of different cancer types. They have inherent migratory properties, which allow them to serve as vehicles for delivering effective therapy to isolated tumors and metastases. MSCs have been engineered to express anti-proliferative, pro-apoptotic, and anti-angiogenic agents that specifically target different cancers. Another field of interest is to modify MSCs with the cytokines that activate pro-tumorigenic immunity or to use them as carriers for the traditional chemical compounds that possess the properties of anti-cancer drugs. Although there is still controversy about the exact function of MSCs in the tumor settings, the encouraging results from the preclinical studies of MSC-based gene therapy for a large number of tumors support the initiation of clinical trials.

SELECTION OF CITATIONS
SEARCH DETAIL
...