Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Soft Matter ; 17(19): 5006-5017, 2021 May 19.
Article in English | MEDLINE | ID: mdl-33908579

ABSTRACT

Droplets covered with densely packed solid particles, often called Pickering droplets, are used in a variety of fundamental studies and practical applications. For many applications, it is essential to understand the mechanics of such particle-laden droplets subjected to external stresses. Several research groups have studied theoretically and experimentally the deformation, relaxation, rotation, and stability of Pickering droplets. Most of the research concerns spherical Pickering droplets. However, little is known about non-spherical Pickering droplets with arrested particle shells subjected to compressive stress. The experimental results presented here contribute to filling this gap in research. We deform arrested non-spherical Pickering droplets by subjecting them to electric fields, and study the effect of droplet geometry and size, as well as particle size and electric field strength, on the deformation and yielding of arrested non-spherical Pickering droplets. We explain why a more aspherical droplet and/or a droplet covered with a shell made of larger particles required higher electric stress to deform and yield. We also show that an armored droplet can absorb the electric stress differently (i.e., through either in-plane or out-of-plane particle rearrangements) depending on the strength of the applied electric field. Furthermore, we demonstrate that particle shells may fail through various crumpling instabilities, including ridge formation, folding, and wrinkling, as well as inward indentation.

2.
Soft Matter ; 17(16): 4413-4425, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33908583

ABSTRACT

Electrically insulating objects immersed in a weakly conducting liquid may Quincke rotate when subjected to an electric field. Experimental and theoretical investigations of this type of electrorotation typically concern rigid particles and particle-free droplets. This work provides the basic features of electric field-induced rotation of particle-covered droplets that expand the current knowledge in this area. Compared to pure droplets, we show that adding particles to the droplet interface considerably changes the parameters of electrorotation. We study in detail deformation magnitude (D), orientation (ß) and rotation rate (ω) of a droplet subjected to a DC E-field. Our experimental results reveal that both the critical electric field (for electrorotation) and the rotational rate depend on droplet size, particle shell morphology (smooth vs. brush-like), and composition (loose vs. locked particles). We also demonstrate the importance of the electrical parameters of the surface particles by comparing the behavior of droplets covered by (insulating) polymeric particles and droplets covered by (non-ohmic) clay mineral particles. The knowledge acquired from the electrorotation experiments is directly translated into practical applications: (i) to form arrested droplets with shells of different permeability; (ii) to study solid-to-liquid transition of particle shells; (iii) to mix particles on shells; and (iv) to increase the formation efficiency of Pickering emulsions.

3.
ACS Appl Mater Interfaces ; 11(32): 29396-29407, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31329414

ABSTRACT

Similar to the human skin, a monolayer of packed particles capillary bound to a liquid interface wrinkles when subjected to compressive stress. The induced wrinkles absorb the applied stress and do not disappear unless the stress is removed. Experimental and theoretical investigations of wrinkle formation typically concern flat particle monolayers subjected to uniaxial stress. In this work, we extend the results on wrinkling of particle-covered interfaces to the investigation of mechanical properties of particle films on a curved interface, that is, we study particle shells formed on droplets and subjected to hoop stress. Opposed to flat particle layers where liquid buoyancy alone acts as the effective stiffness, the mechanical properties of particle layers on small droplets are also affected by the surface curvature. We show here that this leads to formation of wrinkles with different characteristic wavelengths compared to those found at flat interfaces. Our experimental results also reveal that the wrinkle wavelength of particle shells is proportional to the square root of particle size and the size of the droplets on which the shells are formed. Wrinkling of particle layers composed of microparticles with diameters ranging from around 1-100 µm was induced using a novel approach combining electrodeformation and electrohydrodynamic flows. We demonstrate that our contactless approach for studying the mechanical properties of particle shells enables estimation of elasticity, particle film thickness, and bending stiffness of particle shells. The proposed approach is insensitive to both particle coverage and electric field strength. In addition, it enables manipulation of particle packing that is intimately linked with formation of wrinkling patterns. With a wide range of applications depending on accurate mechanical properties (e.g., drug-delivery capsules to self-healing materials), this work provides a valuable method to characterize the mechanical properties of shells and tailor their surface properties (i.e., permeability and roughness).

4.
Soft Matter ; 15(7): 1692, 2019 02 13.
Article in English | MEDLINE | ID: mdl-30680380

ABSTRACT

Correction for 'Efficient formation of oil-in-oil Pickering emulsions with narrow size distributions by using electric fields' by Z. Rozynek et al., Soft Matter, 2018, 14, 5140-5149.

5.
Soft Matter ; 14(24): 5140-5149, 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-29881858

ABSTRACT

Droplets covered by adsorbed particles are used in a wide range of research studies and applications, including stabilising emulsions used in the food or cosmetic industries, and fabricating new materials, such as microcapsules or multi-cavity structures. Pickering emulsions are commonly prepared by bulk emulsification techniques, for instance, by ultrasonic homogenisation or mechanical stirring, by membrane emulsification, or with the use of microfluidics. The latter two methods typically allow for more precise control of the droplet size distribution, whereas the bulk techniques guarantee high throughput. Here we propose a new bulk approach to fabricating Pickering emulsions by utilising electric fields. We prepare oil-in-oil emulsions stabilised by microparticles and control the mean size of the Pickering droplets. In our approach we take advantage of total surface area reduction of emulsion droplets by electrocoalescence. This leads to an increase in particle coverage, and eventually to formation of densely packed particle shells on Pickering droplets. First, we prepare an unstable pre-emulsion with droplets having small sizes and low particle coverages, from which the final Pickering emulsion is formed via consecutive coalescence events speeded up by application of electric fields. We monitor the development of the emulsions with optical microscopy imaging. The results demonstrate that the utilisation of electric fields goes beyond the mere role of enhancing coalescence; it plays an important role in surface particle manipulation and droplet rotation that further promote formation of stable particle-covered drops.

6.
Soft Matter ; 14(26): 5442-5451, 2018 Jul 04.
Article in English | MEDLINE | ID: mdl-29901062

ABSTRACT

Drops covered by adsorbed particles are a prominent research topic because they hold promise for a variety of practical applications. Unlocking the enormous potential of particle-laden drops in new material fabrication, for instance, requires understanding how surface particles affect the electrical and deformation properties of drops, as well as developing new routes for particle manipulation at the interface of drops. In this study, we utilized electric fields to experimentally investigate the mechanics of particle-covered silicone oil drops suspended in castor oil, as well as particle assembly at drop surfaces. We used particles with electrical conductivities ranging from insulating polystyrene to highly conductive silver. When subjected to electric fields, drops can change shape, rotate, or break apart. In the first part of this work, we demonstrate how the deformation magnitude and shape of drops, as well as their electrical properties, are affected by electric field strength, particle size, conductivity, and coverage. We also discuss the role of electrohydrodynamic flows on drop deformation. In the second part, we present the electric field-directed assembly and organization of particles at drop surfaces. In this regard, we studied various parameters in detail, including electric field strength, particle size, coverage, and electrical conductivity. Finally, we present a novel method for controlling the local particle coverage and packing of particles on drop surfaces by simply tuning the frequency of the applied electric field. This approach is expected to find uses in optical materials and applications.

7.
Sci Rep ; 5: 8775, 2015 Mar 05.
Article in English | MEDLINE | ID: mdl-25739522

ABSTRACT

A good material for CO2 capture should possess some specific properties: (i) a large effective surface area with good adsorption capacity, (ii) selectivity for CO2, (iii) regeneration capacity with minimum energy input, allowing reutilization of the material for CO2 adsorption, and (iv) low cost and high environmental friendliness. Smectite clays are layered nanoporous materials that may be good candidates in this context. Here we report experiments which show that gaseous CO2 intercalates into the interlayer nano-space of smectite clay (synthetic fluorohectorite) at conditions close to ambient. The rate of intercalation, as well as the retention ability of CO2 was found to be strongly dependent on the type of the interlayer cation, which in the present case is Li(+), Na(+) or Ni(2+). Interestingly, we observe that the smectite Li-fluorohectorite is able to retain CO2 up to a temperature of 35°C at ambient pressure, and that the captured CO2 can be released by heating above this temperature. Our estimates indicate that smectite clays, even with the standard cations analyzed here, can capture an amount of CO2 comparable to other materials studied in this context.

8.
Eur Phys J E Soft Matter ; 35(1): 9, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22286562

ABSTRACT

This report focuses on both the characterization of organically modified fluorohectorite (Fh) clay particles and their electric-field-induced alignment when suspended in a non-polar liquid (silicone oil). Thermal decomposition temperatures of the surfactant molecules adsorbed on the clay surfaces and those being intercalated between clay crystalline layers were measured by thermal gravimetric analysis (TGA). Zeta potential measurements confirmed the successful modification of the clay surfaces. Optical microscopy observations showed that the sedimentation of modified particles was much slower compared to that of the non-modified system. It was shown that organic modification has a significant effect on colloidal stability of the system, preventing particles from forming large aggregates when suspended in a non-polar liquid. There are also signs of a slight increase in overall alignment of the clay particles when exposed to in an electric field, with the nematic order parameter (S(2)) being higher for the organically modified particles, compared to that of the non-modified counterparts. This behaviour is mainly a result of the formation of smaller and more uniform aggregates, in contrast to the large aggregate structures formed by non-modified clay particles.


Subject(s)
Silicates/chemistry , Solvents/chemistry , Surface-Active Agents/chemistry , Adsorption , Silicone Oils/chemistry , Thermogravimetry/methods , X-Ray Diffraction
9.
Eur Phys J E Soft Matter ; 34(3): 28, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21416265

ABSTRACT

The effect of magnetic field on the structure formation in an oil-based magnetic fluid with various concentrations of magnetite particles was studied. The evaluation of the experimental data obtained from small-angle X-ray scattering and ultrasonic attenuation indicates the formation of chain-like aggregates composed of magnetite particles. The experimental data obtained from ultrasonic spectroscopy fit well with the recent theoretical model by Shliomis, Mond and Morozov but only for a diluted magnetic fluid. In this model it is assumed that a dimer is the main building block of a B -field-induced chain-like structure, thus the estimation of the nematic order parameter does not depend on the actual length of the structure. The scattering method used reveals information about the aggregated structure size and relative changes in the degree of anisotropy in qualitative terms. The coupling constant [Formula: see text] , concentrations [Formula: see text] , average particle size d and its polydispersity [Formula: see text] were initially obtained using the vibrating sample magnetometry and these results were further confirmed by rheometry and scattering methods. Both the particles' orientational distribution and the nematic order parameter S were inferred from the ultrasonic measurements. The investigation of SAXS patterns reveals the orientation and sizes of aggregated structures under application of different magnetic-field strengths. In addition, the magnetic-field-dependent yield stress was measured, and a relationship between the yield stress and magnetic-field strength up to 0.5 T was established.

10.
J Phys Condens Matter ; 22(32): 324104, 2010 Aug 18.
Article in English | MEDLINE | ID: mdl-21386480

ABSTRACT

The electric field induced structuring in clay-oil suspensions has been studied by means of wide angle x-ray scattering (WAXS), rheometry, scanning electron microscopy (SEM), as well as leak current density and dielectric constant measurements. The clay particles' orientation distribution was inferred from the azimuthal changes of the clay diffraction peak intensity. The angular width of that distribution was quantified through an orientational order parameter. Chain and column formation processes were distinguished by comparison of the time evolution of the diffraction peak amplitude with that of the current density. Leak current density was measured for different electric field strengths E and clay particle concentrations Φ. The following scaling relation was found: [Formula: see text]. In addition, the dependence of the yield stress on the electric field and on the particle concentration was measured and shown to scale as: [Formula: see text].

SELECTION OF CITATIONS
SEARCH DETAIL
...