Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Rep ; 12(1): 3814, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35264581

ABSTRACT

We present a new lossy compression algorithm for statistical floating-point data through a representation learning with binary variables. The algorithm finds a set of basis vectors and their binary coefficients that precisely reconstruct the original data. The optimization for the basis vectors is performed classically, while binary coefficients are retrieved through both simulated and quantum annealing for comparison. A bias correction procedure is also presented to estimate and eliminate the error and bias introduced from the inexact reconstruction of the lossy compression for statistical data analyses. The compression algorithm is demonstrated on two different datasets of lattice quantum chromodynamics simulations. The results obtained using simulated annealing show 3-3.5 times better compression performance than the algorithm based on neural-network autoencoder. Calculations using quantum annealing also show promising results, but performance is limited by the integrated control error of the quantum processing unit, which yields large uncertainties in the biases and coupling parameters. Hardware comparison is further studied between the previous generation D-Wave 2000Q and the current D-Wave Advantage system. Our study shows that the Advantage system is more likely to obtain low-energy solutions for the problems than the 2000Q.

2.
Phys Rev E ; 103(1-1): 013302, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33601535

ABSTRACT

Restricted Boltzmann machines (RBMs) are simple statistical models defined on a bipartite graph which have been successfully used in studying more complicated many-body systems, both classical and quantum. In this work, we exploit the representation power of RBMs to provide an exact decomposition of many-body contact interactions into one-body operators coupled to discrete auxiliary fields. This construction generalizes the well known Hirsch's transform used for the Hubbard model to more complicated theories such as pionless effective field theory in nuclear physics, which we analyze in detail. We also discuss possible applications of our mapping for quantum annealing applications and conclude with some implications for RBM parameter optimization through machine learning.

3.
Phys Rev Lett ; 121(3): 032501, 2018 Jul 20.
Article in English | MEDLINE | ID: mdl-30085798

ABSTRACT

A common challenge faced in quantum physics is finding the extremal eigenvalues and eigenvectors of a Hamiltonian matrix in a vector space so large that linear algebra operations on general vectors are not possible. There are numerous efficient methods developed for this task, but they generally fail when some control parameter in the Hamiltonian matrix exceeds some threshold value. In this Letter we present a new technique called eigenvector continuation that can extend the reach of these methods. The key insight is that while an eigenvector resides in a linear space with enormous dimensions, the eigenvector trajectory generated by smooth changes of the Hamiltonian matrix is well approximated by a very low-dimensional manifold. We prove this statement using analytic function theory and propose an algorithm to solve for the extremal eigenvectors. We benchmark the method using several examples from quantum many-body theory.

SELECTION OF CITATIONS
SEARCH DETAIL
...