Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Anim Biotechnol ; 34(9): 4680-4686, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37093180

ABSTRACT

Copy number variation (CNV) is an important member of genetic structural variation that exists widely in animal genomes and is between 50 bp and several Mb in length and widely used in research's of animal genetics and breeding. ZNF679 is an important transcription factor, which has been found association with diseases in the human genome many times. This gene has also been found to be associated with cattle growth traits in previous re-sequencing studies. We tested the CNVs of the ZNF679 gene in 809 individuals from 7 Chinese cattle breeds and tested the association between the CNVs and growth traits in 552 individuals from 5 breeds. The results demonstrated the correlation the correlation between the CNVs of the ZNF679 gene and some Chinese cattle (QC cattle and XN cattle) growth traits. To sum up, this study indicated that ZNF679-CNVs can be used as a candidate gene for molecular genetic marker-assisted selection breeding for cattle growth traits to contribute to the development of genetic improvement of Chinese cattle.


Subject(s)
DNA Copy Number Variations , Gene Expression Regulation , Animals , Cattle/genetics , Humans , DNA Copy Number Variations/genetics , Phenotype , Body Weight/genetics
2.
Anim Biotechnol ; 34(3): 672-678, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35001788

ABSTRACT

Copy number variation (CNV) is a type of genomic structural variation, and the research on it has flourished in recent years. According to the high-throughput sequencing data, we found that the copy number variation region of the GAL3ST1 gene was correlated with the growth traits of bovine. It is significant that we study the CNV of GAL3ST1 gene and process the association analysis between results of Q-PCR and growth traits of Chinese cattle. In this research, SPSS software was used to detect the distribution of GAL3ST1 gene copy number in four cattle breeds and the correlation of growth traits was analyzed. Correlation analysis showed that GAL3ST1 CNV had positive effects on some growth traits of bovine (p < 0.05). In addition, the study detects the expression of GAL3ST1 gene in different tissues of Xia'nan cattles on mRNA level. The result showed that GAL3ST1 gene has different expression conditions in different tissues, results showed that the expression level was high in intestine and low in liver tissue. In a word, we speculated that the GAL3ST1 gene can be used as a molecular marker and this study confirmed that the CNV of it can provide theoretical basis for molecular breeding of cattle in China.


Subject(s)
DNA Copy Number Variations , Animals , Cattle/genetics , DNA Copy Number Variations/genetics , Phenotype , Gene Dosage , Body Weight/genetics , China
3.
Anim Biotechnol ; 34(4): 1524-1531, 2023 Nov.
Article in English | MEDLINE | ID: mdl-35209806

ABSTRACT

Serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 3 (SERPINA3) belongs to the serine protease inhibitor family A subtype, and contains 8 genes from SERPINA3-1 to SERPINA3-8. Although the regulatory effects of these 8 genes have been revealed one by one in recent years, the related effects of SERPINA3-1 gene on cattle growth is still unclear. This study used quantitative Real time PCR (qPCR) to detect the type of copy number variation (CNV) of SERPINA3-1 gene in a total of 542 Chinese cattle, and expression of SERPINA3-1 gene in different tissues of Qinchuan cattles (adult) on mRNA level. Then association analysis was conducted between the detection results and cattle growth traits. The results showed that the Duplication type in SERPINA3-1 gene performed better on the growth traits and the CNV was significantly correlated with multiple growth traits (p < 0.05). In addition, SERPINA3-1 gene has different expression conditions in different tissues, results showed that SERPINA3-1 gene has a low expression in muscle. In conclusion, we speculate that the SERPINA3-1 gene can be used as a molecular marker and the result of this study could be a basic material for candidate functional genes for beef cattle growth and development.


In order to detect the gene expression diversification of the SERPINA3-1 gene, blood samples were collected from five Chinese cattle breeds, we detected related signal and made an associated analyze with cattle growth traits. We determined the copy number variation distribution of the SERPINA3-1 gene in cattle populations and found that the SERPINA3-1 gene has a certain promoting effect on the growth and development of Chinese cattle. For example, Pinan cattle with Duplication type copy number have a better performance on growth traits. This study has enriched the candidate genes of Chinese cattle molecular breeding and provided basic data for Chinese cattle breeding.


Subject(s)
DNA Copy Number Variations , Animals , Cattle/genetics , DNA Copy Number Variations/genetics , Phenotype , Body Weight/genetics
4.
Anim Biotechnol ; 34(4): 1095-1101, 2023 Nov.
Article in English | MEDLINE | ID: mdl-35236249

ABSTRACT

Copy number variant (CNV), a common genetic polymorphism, is closely related to the phenotypic variation traits of organisms. Vesicle-associated membrane protein 7 gene (VAMP7) codes a protein, which is a member of the SNARE proteins family and plays an important role in the process of intracellular vesicle transport. In this study, a total of four cattle breeds (Yunling cattle, Xianan cattle, Pinan cattle, Jiaxian red cattle) were used to investigate the copy numbers, and we found an association relationship between CNV of VAMP7 gene and growth traits of cattle by SPSS 20.0 software. The results showed that the CNV type of VAMP7 gene in four cattle breeds had the same distribution, Duplication type occupies a dominant position among the four varieties. In Yunling cattle, the Duplication type of VAMP7 is significantly related to the height at the hip cross (p < 0.05), Individuals with Duplication type commonly have less performance on growth and development, which indicates that the Duplication type of the VAMP7 gene may have a negative effect on cattle growth. Individuals with the other two CNV types may become the breeding direction of the VAMP7 gene. This study provided a new perspective and basic material for the molecular genetics of the CNV of the VAMP7 gene, and also promoted the breeding progress of Chinese local cattle.


Subject(s)
DNA Copy Number Variations , Polymorphism, Single Nucleotide , Animals , Cattle/genetics , DNA Copy Number Variations/genetics , Phenotype
5.
Anim Biotechnol ; 34(4): 1377-1383, 2023 Nov.
Article in English | MEDLINE | ID: mdl-35108172

ABSTRACT

Recently, Coiled-coil serine-rich protein 1 (CCSER1) gene is reported to be related to economic traits in livestock, and become a hotspot. In our study, we detected CCSER1 gene CNV in 693 goats from six breeds (GZB, GZW, AN, BH, HG, TH) by quantitative real-time PCR (qPCR) and the association analysis between the types of CNV and growth traits. Then, CCSER1 gene expression pattern was discovered in seven tissues from NB goats. Our results showed that the CCSER1 gene copy numbers were distributed differently in the aforementioned six breeds. The type of CCSER1 gene CNV was significantly associated with body weight and heart girth traits in GZW goat, in which individuals with deletion type were dominant in body weight trait (P < 0.05), while the normal type individuals were more advantageous in heart girth trait (P < 0.01); and there was a significant association with heart girth in TH goat (P < 0.05), which normal type was the dominant one. The expression profile revealed that CCSER1 gene has the highest level in the lung, followed by the small intestine and heart. In conclusion, our result is dedicated to an in-depth study of the novel CCSER1 gene CNV site and to provide essential information for Chinese goats molecular selective breeding in the future.


Subject(s)
DNA Copy Number Variations , Goats , Humans , Animals , Goats/genetics , DNA Copy Number Variations/genetics , Phenotype , Body Weight/genetics , Breeding
6.
Vet Med Sci ; 8(5): 2147-2156, 2022 09.
Article in English | MEDLINE | ID: mdl-36052549

ABSTRACT

BACKGROUND: Generally, copy number variation (CNV) is a large-scale structural variation between 50 bp and 1 kb of the genome. It can affect gene expression and is an important reason for genetic diversity and phenotypic trait diversity. Studies have shown that the eukaryotic translation initiation factor 4A2 (EIF4A2) gene plays an essential role in muscle development in both humans and pigs. However, the influence of bovine EIF4A2's copy number change on phenotypic traits has not been reported. OBJECTIVES: To detect the tissue expression profile of the EIF4A2 gene in adult cattle and individuals' CNV type of variation. Then, we explored the correlation between EIF4A2-CNV and growth traits in Chinese cattle breeds. METHODS: Real-time fluorescent quantitative reverse transcription PCR (qRT-qPCR) was used to determine the expression profile of the EIF4A2 gene. Real-time fluorescent quantitative PCR (qPCR) was used to detect the CNV type of bovine populations. Then, SPSS 26.0 was used for association analysis. RESULTS: In this study, a total of 513 individuals in four cattle breeds (Qinchuan cattle [QC], Yunling cattle [YL], Pinan cattle [PN] and Jiaxian cattle [JX]) were detected for EIF4A2 gene's CNV. The results showed that EIF4A2-CNV has an essential impact on hip width (HW) and rump length (RL) in QC, heart girth (HG), chest depth (CD) and RL in YL and HW in PN. However, it had no significant effect on JX. CONCLUSIONS: The above results suggest that EIF4A2 gene's CNV can be used as a molecular marker for cattle breeding, which is helpful to accelerate the breeding of superior beef cattle breeds.


Subject(s)
Breeding , DNA Copy Number Variations , Animals , Cattle/genetics , China , Humans , Peptide Initiation Factors/genetics , Phenotype , Swine
7.
BMC Genomics ; 23(1): 460, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35729510

ABSTRACT

BACKGROUND: Crossbreeding is an important way to improve production beef cattle performance. Pinan cattle is a new hybrid cattle obtained from crossing Piedmontese bulls with Nanyang cows. After more than 30 years of cross-breeding, Pinan cattle show a variety of excellent characteristics, including fast growth, early onset of puberty, and good meat quality. In this study, we analyzed the genetic diversity, population structure, and genomic region under the selection of Pinan cattle based on whole-genome sequencing data of 30 Pinan cattle and 169 published cattle genomic data worldwide.  RESULTS: Estimating ancestry composition analysis showed that the composition proportions for our Pinan cattle were mainly Piedmontese and a small amount of Nanyang cattle. The analyses of nucleotide diversity and linkage disequilibrium decay indicated that the genomic diversity of Pinan cattle was higher than that of European cattle and lower than that of Chinese indigenous cattle. De-correlated composite of multiple selection signals, which combines four different statistics including θπ, CLR, FST, and XP-EHH, was computed to detect the signatures of selection in the Pinan cattle genome. A total of 83 genes were identified, affecting many economically important traits. Functional annotation revealed that these selected genes were related to immune (BOLA-DQA2, BOLA-DQB, LSM14A, SEC13, and NAALADL2), growth traits (CYP4A11, RPL26, and MYH10), embryo development (REV3L, NT5E, CDX2, KDM6B, and ADAMTS9), hornless traits (C1H21orf62), and climate adaptation (ANTXR2). CONCLUSION: In this paper, we elucidated the genomic characteristics, ancestry composition, and selective signals related to important economic traits in Pinan cattle. These results will provide the basis for further genetic improvement of Pinan cattle and reference for other hybrid cattle related studies.


Subject(s)
Selection, Genetic , Sexual Maturation , Animals , Cattle/genetics , Genome , Genomics/methods , Male , Polymorphism, Single Nucleotide , Whole Genome Sequencing/veterinary
8.
Vet Med Sci ; 8(2): 917-924, 2022 03.
Article in English | MEDLINE | ID: mdl-35233959

ABSTRACT

BACKGROUND: Copy number variation (CNV) has become an essential part of genetic structural variation. Coiled-coil domain containing 39 (CCDC39) is a gene that related to the growth and development of organs and tissues. It is identified that it has a CNV region by animal genome resequencing. OBJECTIVE: In this study, we detected the phenotypic traits and different distributions of CCDC39 gene copy numbers in five Chinese cattle breeds (Qinchuan (QC) cattle, Yunling (YL) cattle, Xianan (XN) cattle, Pinan (PN) cattle and Jiaxian (JX) cattle). METHODS: Five hundred and six cattle were randomly selected for CNV distribution detection. Blood samples were taken and genomic DNA was extracted. Different tissues were obtained from adult (n = 3) XN cattle, including heart, liver, kidney, skeletal muscle and lung. The genome qPCR experiment was performed with SYBR Green in triplicate. CDNA qPCR was used to detect the expression level of CCDC39 in different tissues and varieties. Using SPSS v20.0 software, the relationship between CCDC39 CNV and the growth traits of PN, XN, QC, NY and YL cattle breeds was analyzed by one-way analysis of variance (ANOVA). RESULTS: The results showed that the expression of CCDC39 in lung was higher than that in other tissues. The expression in liver and kidney was similar, but the expression in heart and muscle was less. It can be seen that the duplication type of QC cattle CCDC39 CNV is higher than the deletion or normal in the height at hip cross. The normal type of PN cattle in body length and hip width was better than duplication and deletion (p < 0.05). In XN cattle, the deletion type of CNV had superior growth characteristics in heart girth and cannon bone circumference compared with the duplication type and the normal type (p < 0.05). CONCLUSION: The study revealed a significant association between CNV of CCDC39 gene and growth traits in different Chinese cattle breeds.


Subject(s)
DNA Copy Number Variations , Animals , Body Weight/genetics , Cattle/genetics , China , Phenotype , Sequence Analysis, DNA/veterinary
9.
3 Biotech ; 12(4): 93, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35342679

ABSTRACT

Copy number variations (CNVs) belong to mutations in the genome level with loci in the region of genic or intergenic. It is through different effects (such as position effect and dose effect) that influence complex traits and diseases. Deleted in Malignant Brain Tumors 1 (DMBT1) gene is a member of the scavenger receptor cysteine-rich super family. In cattle, this gene has been associated with the susceptibility to bovine tuberculosis. In this study, a new CNV was found in DMBT1 gene of Chinese cattle breeds and tested in two different Chinese cattle breeds (Jiaxian red and Pinan) for frequency distribution analysis. Besides, the body size data such as body length, body height, chest girth, chest width, rump length, and rump girth for Jiaxian (JX) and Pinan (PN) cattle were collected and associated with the newly identified CNV. The CNV was significantly associated with the body length and chest girth of JX cattle, and the rump length of PN cattle (P < 0.05). Furthermore, the expression profile of the DMBT1 gene was tested in calves' tissues and the myoblasts differentiation. It was found that the DMBT1 gene expression was high in tuberculosis susceptible tissues (liver and lungs) at the calf stage and high in myoblast early differentiation. These tests were done using the qPCR method. As the result, the CNV of DMBT1 gene could be used as a candidate marker for bovine growth and health in marker-assisted selection (MAS) breeding.

10.
Gene ; 811: 146071, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34864096

ABSTRACT

Copy number variation, as a kind of genetic submicroscopic structural variation, refers to the deletion or repetition of a large segment of genomic DNA, involving a segment size ranging from 50 bp to several MB. Mitochondrial fusion protein (MFN1) gene regulates the fusion of mitochondrial outer membrane in cells and maintains the dynamic needs of reticular mitochondria in cells. In this study, we conducted to tested the dstribution characteristics of MFN1-CNV in 522 cattles across Xianan cattle (XN), Pinan cattle (PN), Qinchuan cattle (QC), Jiaxian cattle (JX), Yunling cattle (YL), and correlated it with phenotypic traits. Then we observed the expression of MFN1 in various tissues of QC cattle (n = 3), and the expression levels were higher in lung and muscle. The results showed that there was significant correlation between MFN1 gene CNV and hucklebone width of QC cattle, hip width and height at sacrum of JX red cattle, chest width and rump length of YL cattle (P < 0.05). Individuals with duplication type were better than the type of normal or deletion in phenotypic traits. In conclusion, our data showed the correlation between MFN1 gene and growth traits of Chinese cattle. MFN1 gene can be used as a molecular marker for cattle selection and breeding, and accelerate the improvement of Chinese cattle.


Subject(s)
Bone Morphogenetic Proteins/genetics , Cattle/genetics , DNA Copy Number Variations , Mitochondria/physiology , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Animals , Body Weight/genetics , Cattle/growth & development , Genetic Association Studies , Genetic Markers , Genetic Variation , Genotype , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait, Heritable
11.
Anim Biotechnol ; 33(2): 273-278, 2022 Apr.
Article in English | MEDLINE | ID: mdl-32723213

ABSTRACT

Copy number variation mainly refers to the copy number change of DNA fragments from 1 to 5 Mb. The deletion, duplication, inversion and ectopic of these fragments are collectively referred to as CNV. Numerous studies have shown that transfer factors play a vital role in regulating the growth and development of the body, for example the pleomorphic adenoma gene (PLAG). However, there is no study of CNV in PLAG1 gene. We qualified copy numbers within PLAG1 gene in 8 cattle breeds (Qinchuan, Qaidamu, Jinjiang, Guangfeng, Ji'an, Jiaxian, Pinan and Xianan cattle) by quantitative PCR, and explored their impacts on CNV of PLAG1 gene and phenotypic traits in Xianan cattle. We defined Deletion into CN = 0, Normal into CN = 1 and Duplication into CN = 2. The results showed that the individual with type of CN = 1 has a significant better effect on heart girth in JA cattle population (p < 0.01); the individual with type of CN = 1 and CN = 0 has a better effect on Rump length in JX cattle population (p < 0.05); the individual with type of CN = 0 has a better effect on cannon bone circumference in XN cattle population (p < 0.05). Association analysis showed that in JA cattle, the number of CN = 2 is great in JA cattle population, and the performance of CN = 2 in heart girth is better than CN = 1; in JX cattle, the rump length of CN = 2 is less than individual with CN = 0 and CN = 1; in XN cattle, individuals with CN = 0 have a better performance on cannon bone circumference than others. The results can provide a theoretical basis for molecular breeding of Chinese cattle, molecular mark-assist selection (MAS) of growth traits of Chinese cattle, and rapidly establish a Chinese cattle population with excellent genetic resources. Simple summaryWith the living standards rising, people's demand for beef is getting higher and higher, and there is a great significance to improve the growth performance of cattle. We measured body size data and detected copy number type of different cattle breeds (Xianan cattle, Ji'an cattle and Jiaxian cattle), and analyzed the correlation between the two object. We found that copy number variation of PLAG1 gene significantly affected some growth traits of XN cattle, JA cattle, and JX cattle. This may provide the basic material for molecular marker-assisted selection breeding of Chinese cattle breeds.


Subject(s)
Breeding , DNA Copy Number Variations , Animals , Body Size/genetics , Cattle/genetics , China , DNA Copy Number Variations/genetics , DNA-Binding Proteins/genetics , Humans , Phenotype , Polymorphism, Single Nucleotide
12.
Anim Biotechnol ; 33(6): 1289-1295, 2022 Nov.
Article in English | MEDLINE | ID: mdl-33847248

ABSTRACT

DNA methylation could take part in the gene expression and acts an important role in muscle development. In this study, DNA methylation and expression in adipose and muscle tissues were examined at the same time to evaluate the extent of epigenetic modifications and gene expression on the differentially methylated region (DMR) in SERPINA3. Chain reaction of bisulfite sequencing polymerase (BSP) was used to compared difference among DNA methylation patterns. The result of quantitative real-time PCR (qPCR) analysis showed that there was an extensive expression of SERPINA3 gene in tissue and there was a significant difference existing in muscle and adipose between Jiaxian cattle and individual of other breeds with increasing hybridization (p < 0.05). The statistic analyses indicated that DNA methylation patterns had a significant influence to the level of mRNA in tissue of fat and muscle. This study may be an important reference for investigating development of muscle tissue in cattle, and may promote the process of cattle molecular breeding.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Cattle/genetics , Animals , DNA Methylation/genetics , Promoter Regions, Genetic , Muscle Development/genetics , RNA, Messenger/genetics
13.
Gene ; 809: 146014, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34655722

ABSTRACT

SIMPLE SUMMARY: As a member of genetic polymorphism, copy number variation has been a commonly used method in the world for investigating effect of genetic polymorphism on gene expression. Effect of genetic polymorphism made on livestock development has been more and more important in beef cattle molecular breeding. The characteristics of Chinese cattle are excellent meat quality, tolerant to rough feeding, good environmental adaptability and so on. But there are some obvious weaknesses still exist in the process of cattle growth and development, such as weak hindquarters and growth slowly. To improve the growth performance and market competitiveness of Chinese cattle, a lot of studies have been made about finding and investigating effective molecular marker. In this study, Q-PCR and data association analysis were used for PLA2G2A gene copy number variation detection and related effect analysis in Chinese cattle. Results showed that PLA2G2A gene has a significant effect on two breeds of Chinese cattle on growth traits, which could be a basic materials and effective information of cattle molecular markers breeding. PLA2G2A, member of secreted phospholipases A2 (sPLA2) in superfamily of phospholipase A2, could catalyze the process of glycerophospholipids hydrolysis from position of sn-2 acyl with the release of free fatty acids and lysophospholipids. Researches about PLA2G2A gene are mostly focus on disease, including tumors and diabetes, the number of study occurred on animal breeding is weak. In this study, blood samples were collected from five breeds of Chinese cattle (Qingchuan cattle, Xianan cattle, Yunling cattle, Pinan cattle and Guyuan cattle) for PLA2G2A gene CNV type detection. SPSS 20.0 software and method of ANOVA were used to analyzed the association between types of CNV and growth traits. Results reveal that the distribution of different copy number types in different cattle breeds is different. In QC, XN and GY cattle, the frequencies of Deletion and Duplication are about 40%; in YL cattle, the frequency of Deletion type exceeds 60%; in PN cattle, the frequency of Duplication is closed to 80%. Association analysis indicate that CNV of PLA2G2A gene showed a positive effect in cattle growth: in QC cattle, Chest depth with Normal type copy number possess a increased trend (P < 0.05); individuals with Deletion type copy number have better performance on Height at sacrum, Heart girth and Body height in GY cattle (P < 0.05). The functional role and molecular mechanism of PLA2G2A gene in animal growth and development are still unclear, and it is necessary for processing a further research. This research aims to provide basic materials for molecular breeding of Chinese cattle.


Subject(s)
Cattle/genetics , Group II Phospholipases A2/genetics , Animals , Body Weight/genetics , Cattle/growth & development , China , DNA Copy Number Variations , Female , Gene Expression Regulation, Developmental , Gene Frequency
14.
Anim Biotechnol ; 33(7): 1545-1552, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34392778

ABSTRACT

Single nucleotide polymorphisms (SNPs) include the transition and transversion of a single base. In this study, we found two cSNPs (rs110757796 and rs110652478) in the FABP4 (fatty acid-binding protein 4) gene and tested their population genetic parameters in five Chinese cattle breeds. FABP4 is a key marker molecule for lipid production. It plays a crucial role in the growth and development of animals. Thus, we also analyze the association between the two cSNPs of FABP4 gene and body measurement data of Chinese cattle. Our results were indicated that rs110757796 was significantly associated with the chest width in Chinese cattle groups (p < 0.05). In addition, we tested the spatiotemporal expression profile of the bovine FABP4 gene and effect of genetic variation on its expression. It was found that bovine FABP4 gene has tissue-differential expression. Then, the genetic variation located on the exon has a certain effect on the expression of FABP4 gene in bovine muscle. Overall, our results provide that FABP4 could as a candidate gene to improve the progress of cattle molecular breeding.


Subject(s)
Cattle , Fatty Acid-Binding Proteins , Polymorphism, Single Nucleotide , Animals , Cattle/genetics , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism
15.
BMC Genomics ; 22(1): 43, 2021 Jan 09.
Article in English | MEDLINE | ID: mdl-33421990

ABSTRACT

BACKGROUND: Native cattle breeds are an important source of genetic variation because they might carry alleles that enable them to adapt to local environment and tough feeding conditions. Jiaxian Red, a Chinese native cattle breed, is reported to have originated from crossbreeding between taurine and indicine cattle; their history as a draft and meat animal dates back at least 30 years. Using whole-genome sequencing (WGS) data of 30 animals from the core breeding farm, we investigated the genetic diversity, population structure and genomic regions under selection of Jiaxian Red cattle. Furthermore, we used 131 published genomes of world-wide cattle to characterize the genomic variation of Jiaxian Red cattle. RESULTS: The population structure analysis revealed that Jiaxian Red cattle harboured the ancestry with East Asian taurine (0.493), Chinese indicine (0.379), European taurine (0.095) and Indian indicine (0.033). Three methods (nucleotide diversity, linkage disequilibrium decay and runs of homozygosity) implied the relatively high genomic diversity in Jiaxian Red cattle. We used θπ, CLR, FST and XP-EHH methods to look for the candidate signatures of positive selection in Jiaxian Red cattle. A total number of 171 (θπ and CLR) and 17 (FST and XP-EHH) shared genes were identified using different detection strategies. Functional annotation analysis revealed that these genes are potentially responsible for growth and feed efficiency (CCSER1), meat quality traits (ROCK2, PPP1R12A, CYB5R4, EYA3, PHACTR1), fertility (RFX4, SRD5A2) and immune system response (SLAMF1, CD84 and SLAMF6). CONCLUSION: We provide a comprehensive overview of sequence variations in Jiaxian Red cattle genomes. Selection signatures were detected in genomic regions that are possibly related to economically important traits in Jiaxian Red cattle. We observed a high level of genomic diversity and low inbreeding in Jiaxian Red cattle. These results provide a basis for further resource protection and breeding improvement of this breed.


Subject(s)
Plant Breeding , Polymorphism, Single Nucleotide , Animals , Cattle/genetics , Genomics , Phenotype , Selection, Genetic , Whole Genome Sequencing
16.
Anim Biotechnol ; 32(6): 683-687, 2021 Dec.
Article in English | MEDLINE | ID: mdl-32208881

ABSTRACT

Copy number variation (CNV) has been used as an important source of phenotypic and genetic diversity in recent years. Nicastrin (NCSTN) gene is usually attached to human diseases such as Alzheimer's disease, and Acne inversa. However, there are no essays about the NCSTN gene combining with cattle breeds. In our study, we discovered different distributions of NCSTN gene copy number and associated it with phenotypic traits in four Chinese yellow cattle breeds (XN, PN, QC and YL). The result turned out that the CNV of the NCSTN gene was associated with several growth traits, such as cannon circumference, chest girth and rump length (p < 0.05). In general, we revealed the eminence over CNV of NCSTN gene and economic traits, suggesting that the CNV of the NCSTN gene can be considered to be a promising molecular breeding marker of Chinese beef cattle.


Subject(s)
Amyloid Precursor Protein Secretases/genetics , Cattle , DNA Copy Number Variations , Membrane Glycoproteins/genetics , Animals , Cattle/genetics , Cattle/growth & development , China , Gene Dosage
17.
Gene ; 769: 145201, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33035617

ABSTRACT

Single nucleotide polymorphism (SNP) has recently become one of the ideal genetic markers. SNP refers to the DNA sequence polymorphism caused by double nucleotide variation in the genome, including the conversion or transversion of segmented bases. The synthesis and metabolism of triglycerides are related to the changes of energy in the body of livestock, which in turn affects their growth and development. Studies have shown that MOGAT1 gene plays a role in the route of triglyceride synthesis. PCR-RFLP and agarose gel electrophoresis technology were used to type the SNP site of MOGAT1 gene at g.25940T > C in this study. Association analysis between typing results and growth trait data was detected by SPSS 20.0 software. Results show that MOGAT1 gene was in a low level of heterozygosity in Xianan, Qinchuan and Pinan cattle population (0 < PIC < 0.25), and in middle level of heterozygosity in YL cattle population(0.25 < PIC < 0.5). And genotype 'AA' was dominant gene in Chinese cattle population. In QC and XN cattle, genotype of GG possess advantage on Body weight (P < 0.05); in YL cattle, individuals with genotype of homozygous mutation decreased significantly on Chest depth (P < 0.05). The purpose of this research is to provide theoretical materials for molecular breeding of yellow cattle and to promote the process of improving the growth traits of Chinese local yellow cattle.


Subject(s)
Acyltransferases/genetics , Cattle/growth & development , Polymorphism, Single Nucleotide , Animals , Cattle/genetics , Female , Genetic Markers , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Selective Breeding
18.
Gene ; 741: 144519, 2020 May 30.
Article in English | MEDLINE | ID: mdl-32126252

ABSTRACT

Copy number variations (CNVs) are the wide structural variations ranging from 50 bp to several Mb at genome which can affect gene expression and further impacting growth and development traits of livestock. Comparing with single nucleotide polymorphisms (SNPs), CNVs can better explain the genetic and phenotypic diversity, are increasingly important in biological research. As a member of immunoglobulin super-family, cell adhesion molecule 2 (CADM2) plays a vital role in cancer development and metabolic regulation. Here, we tested the CNV of CADM2 gene in 443 goats across five breeds (Guizhou white goat, GZW; Guizhou black goat, GZB; Africa Nubian goat, AN; Boer goat × Huai goat, BH; Boer goat, BG) and detected its association with phenotypic traits. Subsequently, we analyzed the CADM2 gene expression level in different tissues of NB goats (n = 3, Nubian × Black) and the transcriptional expression in lung is much higher than others. The results showed that the CNV of CADM2 has a significant association with withers height and body length in GZB goat (P < 0.01), in which individuals with type of deletion were superior to those with duplication or normal type in term of body hight and body length (P < 0.01). In summary, this study confirmed the association between CNV of CADM2 gene and growth traits, and our research data indicated the CADM2-CNV may considered as a prospective candidate for the molecular marker-assisted selection breeding of goat growth traits, which conducived to accelerating the genetic amelioration in Chinese goats.


Subject(s)
Cell Adhesion Molecules/genetics , DNA Copy Number Variations/genetics , Goats/genetics , Animals , Asian People , Breeding , Genetics, Population , Genome , Goats/growth & development , Humans , Phenotype , Polymorphism, Single Nucleotide/genetics
19.
Animals (Basel) ; 10(2)2020 Feb 05.
Article in English | MEDLINE | ID: mdl-32033330

ABSTRACT

Copy number variation is a part of genomic structural variation and has caused widespread concern. According to the results of high-throughput screening of the MLLT10 gene, we found that the copy number variation region of the MLLT10 gene was correlated with bovine growth traits. We aimed to detect the MLLT10 gene copy number variation and provide materials for the Chinese yellow cattle breed. In this study, the SPSS software was used to analyze the correlation among the copy number type of six different cattle breeds (i.e., Qinchuan, Xianan, Jiaxian, Yanbian, Sinan, Yunling) and the corresponding growth traits. The results showed the following: In Qinchuan cattle, the copy number duplication type was greater than the deletion and normal types; in Xianan cattle, the copy number duplication and normal types were less as compared with the deletion type; and in Yunling cattle, the frequency of the duplication type was dominant among the three types of copy number variants. The correlation analysis result showed that there is a significant correlation between the copy number variation (CNV) of the MLLT10 gene and the growth traits of three cattle breeds. Furthermore, correlation analysis showed that MLLT10 CNV had positive effects on growth traits such as hip width, rump length, hucklebone width, and cannon bone circumference (p < 0.05). This study provides a basis for the molecular-assisted marker breeding of cattle and contributes to the breeding of cattle.

SELECTION OF CITATIONS
SEARCH DETAIL
...