Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 10(6): e0127928, 2015.
Article in English | MEDLINE | ID: mdl-26076446

ABSTRACT

The effects of testosterone (T4) and dihydrotestosterone (DHT) on the survival of the helminth cestode parasite Taenia crassiceps, as well as their effects on actin, tubulin and myosin expression and their assembly into the excretory system of flame cells are described in this paper. In vitro evaluations on parasite viability, flow cytometry, confocal microscopy, video-microscopy of live flame cells, and docking experiments of androgens interacting with actin, tubulin, and myosin were conducted. Our results show that T4 and DHT reduce T. crassiceps viability in a dose- and time-dependent fashion, reaching 90% of mortality at the highest dose used (40 ng/ml) and time exposed (10 days) in culture. Androgen treatment does not induce differences in the specific expression pattern of actin, tubulin, and myosin isoforms as compared with control parasites. Confocal microscopy demonstrated a strong disruption of the parasite tegument, with reduced assembly, shape, and motion of flame cells. Docking experiments show that androgens are capable of affecting parasite survival and flame cell morphology by directly interacting with actin, tubulin and myosin without altering their protein expression pattern. We show that both T4 and DHT are able to bind actin, tubulin, and myosin affecting their assembly and causing parasite intoxication due to impairment of flame cell function. Live flame cell video microscopy showing a reduced motion as well changes in the shape of flame cells are also shown. In summary, T4 and DHT directly act on T. crassiceps cysticerci through altering parasite survival as well as the assembly and function of flame cells.


Subject(s)
Androgens/pharmacology , Anthelmintics/pharmacology , Taenia/drug effects , Taenia/physiology , Actins/metabolism , Animals , Dihydrotestosterone/pharmacology , Female , Mice , Microscopy, Confocal , Myosins/metabolism , Protein Transport , Reproduction/drug effects , Testosterone/pharmacology , Tubulin/metabolism
2.
Int J Parasitol ; 44(10): 687-96, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24879953

ABSTRACT

We examined the effects of oestradiol (E2) and progesterone (P4) on cytoskeletal protein expression in the helminth Taenia crassiceps - specifically actin, tubulin and myosin. These proteins assemble into flame cells, which constitute the parasite excretory system. Total protein extracts were obtained from E2- and P4-treated T. crassiceps cysticerci and untreated controls, and analysed by one- and two-dimensional protein electrophoresis, flow cytometry, immunofluorescence and videomicroscopy. Exposure of T. crassiceps cysticerci to E2 and P4 induced differential protein expression patterns compared with untreated controls. Changes in actin, tubulin and myosin expression were confirmed by flow cytometry of parasite cells and immunofluorescence. In addition, parasite morphology was altered in response to E2 and P4 versus controls. Flame cells were primarily affected at the level of the ciliary tuft, in association with the changes in actin, tubulin and myosin. We conclude that oestradiol and progesterone act directly on T. crassiceps cysticerci, altering actin, tubulin and myosin expression and thus affecting the assembly and function of flame cells. Our results increase our understanding of several aspects of the molecular crosstalk between host and parasite, which might be useful in designing anthelmintic drugs that exclusively impair parasitic proteins which mediate cell signaling and pathogenic reproduction and establishment.


Subject(s)
Cytoskeletal Proteins/metabolism , Estradiol/pharmacology , Gene Expression Regulation/drug effects , Progesterone/pharmacology , Taenia/classification , Taenia/cytology , Animals , Cells, Cultured , Cytoskeletal Proteins/genetics , Mice , Mice, Inbred BALB C
3.
J Muscle Res Cell Motil ; 34(5-6): 357-68, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24037259

ABSTRACT

In the present study, we analyze the influence of chronic undernutrition on protein expression, muscle fiber type composition, and fatigue resistance of the fast extensor digitorum longus (EDL) muscle of male juvenile rats (45 ± 3 days of life; n = 25 and 31 rats for control and undernourished groups, respectively). Using 2D gel electrophoresis and mass spectrometry, we identified in undernourished muscles 12 proteins up-regulated (8 proteins of the electron transport chain and the glycolytic pathway, 2 cross-bridge proteins, chaperone and signaling proteins that are related to the stress response). In contrast, one down-regulated protein related to the fast muscle contractile system and two other proteins with no changes in expression were used as charge controls. By means of COX and alkaline ATPase histochemical techniques and low-frequency fatigue protocols we determined that undernourished muscles showed a larger proportion (15% increase) of Type IIa/IId fibers (oxidative-glycolytic) at the expense of Type IIb (glycolytic) fibers (15.5% decrease) and increased fatigue resistance (55.3%). In addition, all fiber types showed a significant reduction in their cross-sectional area (slow: 64.4%; intermediate: 63.9% and fast: 61.2%). These results indicate that undernourished EDL muscles exhibit an increased expression of energy metabolic and myofibrillar proteins which are associated with the predominance of oxidative and Type IIa/IId fibers and to a higher resistance to fatigue. We propose that such alterations may act as protective and/or adaptive mechanisms that counterbalance the effect of chronic undernourishment.


Subject(s)
Food Deprivation/physiology , Muscle Fibers, Fast-Twitch/physiology , Muscle, Skeletal/physiology , Animals , Chronic Disease , Female , Male , Muscle Fibers, Fast-Twitch/metabolism , Muscle, Skeletal/metabolism , Rats , Rats, Wistar , Structure-Activity Relationship
4.
J Histochem Cytochem ; 61(5): 372-81, 2013 May.
Article in English | MEDLINE | ID: mdl-23392735

ABSTRACT

We analyze the effect of chronic undernourishment on extensor digitorum longus (EDL) muscle maturation in the rat. Cytochrome c oxidase (COX) and alkaline ATPase histoenzymatic techniques were used to determine the relative proportion of different fiber types (oxidative/glycolytic and type I, IIa/IId, or IIb, respectively) and their cross-sectional area in control and undernourished EDL muscles at several postnatal (PN) ages. From PN days 15 to 45, undernourished EDL muscles showed predominance of oxidative and type IIa/IId fibers, but from PN days 60 to 90, there were a larger proportion of oxidative fibers and an equal proportion of type IIa/IId and IIb fibers. Meanwhile, in adult stages (from PN days 130-365), the relative proportion of fiber types in control and undernourished EDL muscles showed no significant differences. In addition, from PN days 15 to 90, there was a significant reduction in the cross-sectional area of all fibers (slow: 13-53%; intermediate: 24-74%; fast: 9-80%) but no differences from PN days 130 to 365. It is suggested that chronic undernourishment affects the maturation of fast-type muscle fibers only at juvenile stages (from PN days 15-45) and the probable occurrence of adaptive mechanisms in muscle fibers, allowing adult rats to counterbalance the alterations provoked by chronic food deprivation.


Subject(s)
Adenosine Triphosphatases/metabolism , Electron Transport Complex IV/metabolism , Food Deprivation/physiology , Lower Extremity/growth & development , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/enzymology , Animals , Body Weight , Female , Muscle Fibers, Skeletal/physiology , Organ Size , Oxidation-Reduction , Rats , Rats, Wistar , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...