Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Today Bio ; 25: 101007, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38779617

ABSTRACT

Zirconia faces challenges in dental implant applications due to its inherent biological inertness, which compromises osseointegration, a critical factor for the long-term success of implants that rely heavily on specific cell adhesion and enhanced osteogenic activity. Here, we fabricated a dual-functional coating that incorporates strontium ions, aimed at enhancing osteogenic activity, along with an integrin-targeting sequence to improve cell adhesion by mussel byssus-inspired surface chemistry. The results indicated that although the integrin-targeting sequence at the interface solely enhances osteoblast adhesion without directly increasing osteogenic activity, its synergistic interaction with the continuously released strontium ions from the coating, as compared to the release of strontium ions alone, significantly enhances the overall osteogenic effect. More importantly, compared to traditional polydopamine surface chemistry, the coating surface is enriched with amino groups capable of undergoing various chemical reactions and exhibits enhanced stability and aesthetic appeal. Therefore, the synergistic interplay between strontium and the functionally customizable surface offers considerable potential to improve the success of zirconia implantation.

2.
Bioact Mater ; 10: 405-419, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34901556

ABSTRACT

The excessive accumulation of reactive oxygen species (ROS) under osteoporosis precipitates a microenvironment with high levels of oxidative stress (OS). This could significantly interfere with the bioactivity of conventional titanium implants, impeding their early osseointegration with bone. We have prepared a series of strontium (Sr)-doped titanium implants via micro-arc oxidation (MAO) to verify their efficacy and differences in osteoinduction capabilities under normal and osteoporotic (high OS levels) conditions. Apart from the chemical composition, all groups exhibited similar physicochemical properties (morphology, roughness, crystal structure, and wettability). Among the groups, the low Sr group (Sr25%) was more conducive to osteogenesis under normal conditions. In contrast, by increasing the catalase (CAT)/superoxide dismutase (SOD) activity and decreasing ROS levels, the high Sr-doped samples (Sr75% and Sr100%) were superior to Sr25% in inducing osteogenic differentiation of MC3T3-E1 cells and the M2 phenotype polarization of RAW264.7 cells, thus enhancing early osseointegration. Furthermore, the results of both in vitro cell co-culture and in vivo studies also showed that the high Sr-doped samples (especially Sr100%) had positive effects on osteoimmunomodulation under the OS microenvironment. Ultimately, the collated findings indicated that the high proportion Sr-doped MAO coatings were more favorable for osteoporosis patients in implant restorations.

3.
Int J Nanomedicine ; 16: 8265-8277, 2021.
Article in English | MEDLINE | ID: mdl-35002230

ABSTRACT

BACKGROUND: Sandblasted/acid-etched titanium (SLA-Ti) implants are widely used for dental implant restoration in edentulous patients. However, the poor osteoinductivity and the large amount of Ti particles/ions released due to friction or corrosion will affect its long-term success rate. PURPOSE: Various zirconium hydrogen phosphate (ZrP) coatings were prepared on SLA-Ti surface to enhance its friction/corrosion resistance and osteoinduction. METHODS: The mixture of ZrCl4 and H3PO4 was first coated on SLA-Ti and then calcined at 450°C for 5 min to form ZrP coatings. In addition to a series of physiochemical characterization such as morphology, roughness, wettability, and chemical composition, their capability of anti-friction and anti-corrosion were further evaluated by friction-wear test and by potential scanning. The viability and osteogenic differentiation of MC3T3-E1 cells on different substrates were investigated via MTT, mineralization and PCR assays. RESULTS: The characterization results showed that there were no significant changes in the morphology, roughness and wettability of ZrP-modified samples (SLA-ZrP0.5 and SLA-ZrP0.7) compared with SLA group. The results of electrochemical corrosion displayed that both SLA-ZrP0.5 and SLA-ZrP0.7 (especially the latter) had better corrosion resistance than SLA in normal saline and serum-containing medium. SLA-ZrP0.7 also exhibited the best friction resistance and great potential to enhance the spreading, proliferation and osteogenic differentiation of MC3T3-E1 cells. CONCLUSION: We determined that SLA-ZrP0.7 had excellent comprehensive properties including anti-corrosion, anti-friction and osteoinduction, which made it have a promising clinical application in dental implant restoration.


Subject(s)
Dental Implants , Titanium , Corrosion , Friction , Humans , Hydrogen , Osteogenesis , Phosphates , Surface Properties , Zirconium
SELECTION OF CITATIONS
SEARCH DETAIL
...