Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chin Med ; 19(1): 37, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429848

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is a prevalent global health concern associated with the loss of articular cartilage and subchondral bone. The lack of disease-modifying drugs for OA necessitates the exploration of novel therapeutic options. Our previous study has demonstrated that traditional Chinese medical herb Trachelospermum jasminoides (Lindl.) Lem. extract suppressed osteoclastogenesis and identified trachelogenin (TCG) as a representative compound. Here, we delved into TCG's potential to alleviate OA. METHODS: We initially validated the in vivo efficacy of TCG in alleviating OA using a rat OA model. Subsequently, we isolated primary bone marrow-derived macrophages in vitro to investigate TCG's impact on osteoclastogenesis. We further employed a small molecule pull-down assay to verify TCG's binding target within osteoclasts. Finally, we isolated primary mouse chondrocytes in vitro to study TCG's regulatory effects and mechanisms on chondrocyte survival. RESULTS: TCG preserved subchondral bone integrity and protected articular cartilage in a rat OA model. Subsequently, in vitro experiments unveiled TCG's capability to inhibit osteoclastogenesis and function through binding to Ras association proximate 1 (Rap1) and inhibiting its activation. Further study demonstrated that TCG inhibited Rap1/integrin αvß3/c-Src/Pyk2 signaling cascade, and consequently led to failed F-actin ring formation. Besides, TCG promoted the proliferation of mouse primary chondrocytes while suppressing apoptosis in vitro. This is attributed to TCG's ability to upregulate HIF1α, thereby promoting glycolysis. CONCLUSION: TCG exerted inhibitory effects on osteoclastogenesis through binding to Rap1 and inhibiting Rap1 activation, consequently preventing subchondral bone loss. Moreover, TCG enhanced chondrocyte survival by upregulating HIF1α and promoting glycolysis. These dual mechanisms collectively provide a novel approach to prevented against cartilage degradation.

2.
JAMA Netw Open ; 7(2): e2354359, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38306099

ABSTRACT

Importance: To date, there is currently no evidence-based medical support for the efficacy of topology-optimized splints in treating distal radius fractures. Objective: To assess the clinical efficacy and complication rates of topology-optimized splints in the treatment of distal radius fractures after closed manual reduction. Design, Setting, and Participants: This 12-week, multicenter, open-label, analyst-blinded randomized clinical trial (comprising a 6-week intervention followed by a 6-week observational phase) was carried out from December 3, 2021, to March 10, 2023, among 110 participants with distal radius fractures. Statistical analysis was performed on an intention-to-treat basis between June 3 and 30, 2023. Intervention: Participants were randomly assigned to 2 groups: the intervention group received topology-optimized splint immobilization and the control group received cast immobilization after closed manual reduction for 6weeks. After this period, immobilization was removed, and wrist rehabilitation activities commenced. Main Outcomes and Measures: The primary outcome was the Gartland-Werley (G-W) wrist score at 6 weeks (where higher scores indicate more severe wrist dysfunction). Secondary outcomes encompassed radiographic parameters, visual analog scale scores, swelling degree grade, complication rates, and 3 dimensions of G-W wrist scores. Results: A total of 110 patients (mean [SD] age, 64.1 [12.7] years; 89 women [81%]) enrolled in the clinical trial, and complete outcome measurements were obtained for 101 patients (92%). Median G-W scores at 6 weeks were 15 (IQR, 13-18) for the splint group and 17 (IQR, 13-18) for the cast group (mean difference, -2.0 [95% CI, -3.4 to -0.6]; P = .03), indicating a statistically significant advantage for the splint group. At 12 weeks, no clinically significant differences in G-W scores between the 2 groups were observed. Complication rates, including shoulder-elbow pain and dysfunction and skin irritation, were less common in the splint group (shoulder-elbow pain and dysfunction: risk ratio, 0.28 [95% CI, 0.08-0.93]; P = .03; skin irritation: risk ratio, 0.30 [95% CI, 0.10-0.89]; P = .02). Conclusions and Relevance: Findings of this randomized clinical trial suggest that patients with distal radius fractures that were managed with topology-optimized splints had better wrist functional outcomes and fewer complications at 6 weeks compared with those who received casting, with no difference at week 12. Therefore, topology-optimized splints with improved performance have the potential to be an advisable approach in the management of distal radius fractures. Trial Registration: Chinese Clinical Trial Registry: ChiCTR2000036480.


Subject(s)
Joint Diseases , Radius Fractures , Wrist Fractures , Humans , Female , Middle Aged , Splints , Radius Fractures/therapy , Treatment Outcome , Pain
SELECTION OF CITATIONS
SEARCH DETAIL
...