Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Clin Lab Sci ; 53(4): 578-586, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37625833

ABSTRACT

OBJECTIVE: Sepsis, a life-threatening organ dysfunction, is among the leading causes of mortality in intensive care units. Sepsis occurrence is associated with macrophage pyroptosis, and microRNAs (miRNAs) have emerged as key factors in this process. However, the specific role of miR-122-3p in pyroptosis during sepsis progression and its underlying mechanisms remain to be fully elucidated. METHODS: We established an in vitro sepsis model using lipopolysaccharide (LPS)-activated macrophages, followed by transfection of a miR-122-3p mimic into RAW264.7 macrophages. We subsequently determined the effects of miR-122-3p on cell viability and pyroptosis using cell viability, western blot, and qPCR assays. The binding affinity between miR-122-3p and NLR pyrin domain containing 1 (NLRP1) mRNA was then confirmed using a dual-luciferase reporter assay. Finally, the secretion of pro-inflammatory cytokines (interleukin (IL)-2, IL-6, and tumor necrosis factor-α (TNF-α) was determined using ELISA. RESULTS: The results revealed that LPS treatment lead to a significant increase in the production of pro-inflammatory cytokines including IL-2, IL-6, and TNF-α in RAW264.7 cells. We observed that overexpression of miR-122-3p effectively restored cell viability and attenuated the expression of key inflammatory markers promoted by LPS, such as caspase-1, pro-caspase-1, IL-18, IL-1ß, NLRP3, apoptosis-associated speck-like protein containing CARD, and cleaved- gasdermin-D. Our data indicate that miR-122-3p is capable of directly bounding to NLRP1 and inhibiting its expression. CONCLUSIONS: These results confirmed that miR-122-3p plays a crucial role in the inhibition of sepsis by suppressing macrophage pyroptosis in an NLRP1-dependent manner. Therefore, miR-122-3p presents as a promising therapeutic target for sepsis.


Subject(s)
MicroRNAs , Pyroptosis , Humans , Caspase 1 , Cytokines , Interleukin-6 , Lipopolysaccharides/pharmacology , Macrophages , MicroRNAs/genetics , NLR Proteins/genetics , Tumor Necrosis Factor-alpha
SELECTION OF CITATIONS
SEARCH DETAIL
...