Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
PeerJ ; 12: e17323, 2024.
Article in English | MEDLINE | ID: mdl-38726377

ABSTRACT

The rice receptor kinase XA21 confers broad-spectrum resistance to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of rice bacterial blight disease. To investigate the relationship between the expression level of XA21 and resulting resistance, we generated independent HA-XA21 transgenic rice lines accumulating the XA21 immune receptor fused with an HA epitope tag. Whole-genome sequence analysis identified the T-DNA insertion sites in sixteen independent T0 events. Through quantification of the HA-XA21 protein and assessment of the resistance to Xoo strain PXO99 in six independent transgenic lines, we observed that XA21-mediated resistance is dose dependent. In contrast, based on the four agronomic traits quantified in these experiments, yield is unlikely to be affected by the expression level of HA-XA21. These findings extend our knowledge of XA21-mediated defense and contribute to the growing number of well-defined genomic landing pads in the rice genome that can be targeted for gene insertion without compromising yield.


Subject(s)
Disease Resistance , Oryza , Plant Diseases , Plant Proteins , Plants, Genetically Modified , Xanthomonas , Xanthomonas/genetics , Oryza/microbiology , Oryza/genetics , Oryza/immunology , Plant Diseases/microbiology , Plant Diseases/immunology , Plant Diseases/genetics , Disease Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Serine-Threonine Kinases
2.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Article in English | MEDLINE | ID: mdl-34272287

ABSTRACT

Parent-of-origin-dependent gene expression in mammals and flowering plants results from differing chromatin imprints (genomic imprinting) between maternally and paternally inherited alleles. Imprinted gene expression in the endosperm of seeds is associated with localized hypomethylation of maternally but not paternally inherited DNA, with certain small RNAs also displaying parent-of-origin-specific expression. To understand the evolution of imprinting mechanisms in Oryza sativa (rice), we analyzed imprinting divergence among four cultivars that span both japonica and indica subspecies: Nipponbare, Kitaake, 93-11, and IR64. Most imprinted genes are imprinted across cultivars and enriched for functions in chromatin and transcriptional regulation, development, and signaling. However, 4 to 11% of imprinted genes display divergent imprinting. Analyses of DNA methylation and small RNAs revealed that endosperm-specific 24-nt small RNA-producing loci show weak RNA-directed DNA methylation, frequently overlap genes, and are imprinted four times more often than genes. However, imprinting divergence most often correlated with local DNA methylation epimutations (9 of 17 assessable loci), which were largely stable within subspecies. Small insertion/deletion events and transposable element insertions accompanied 4 of the 9 locally epimutated loci and associated with imprinting divergence at another 4 of the remaining 8 loci. Correlating epigenetic and genetic variation occurred at key regulatory regions-the promoter and transcription start site of maternally biased genes, and the promoter and gene body of paternally biased genes. Our results reinforce models for the role of maternal-specific DNA hypomethylation in imprinting of both maternally and paternally biased genes, and highlight the role of transposition and epimutation in rice imprinting evolution.


Subject(s)
Endosperm/genetics , Evolution, Molecular , Genomic Imprinting , Oryza/genetics , DNA Methylation , DNA Transposable Elements , Epigenomics , Gene Expression Regulation, Plant , Mutation , Oryza/classification , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
3.
Plant Commun ; 2(4): 100215, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34327325

ABSTRACT

XA21 encodes a rice immune receptor that confers robust resistance to most strains of the Gram-negative bacterium Xanthomonas oryzae pv. oryzae (Xoo). XA21-mediated immunity is triggered by recognition of a small protein called RaxX-sY (required for activation of XA21-mediated immunity X, tyrosine-sulfated) secreted by Xoo. To identify components regulating XA21-mediated immunity, we generated and screened a mutant population of fast-neutron-mutagenized rice expressing Ubi:Myc-XA21 for those susceptible to Xoo. Here, we report the characterization of one of these rice mutants, named sxi2 (suppressor of XA21-mediated immunity-2). Whole-genome sequencing revealed that sxi2 carries a deletion of the PALADIN (PALD) gene encoding a protein with three putative protein tyrosine phosphatase-like domains (PTP-A, -B, and -C). Expression of PALD in the sxi2 genetic background was sufficient to complement the susceptible phenotype, which requires the catalytic cysteine of the PTP-A active site to restore resistance. PALD co-immunoprecipitated with the full-length XA21 protein, whose levels are positively regulated by the presence of the PALD transgene. Furthermore, we foundd that sxi2 retains many hallmarks of XA21-mediated immunity, similar to the wild type. These results reveal that PALD, a previously uncharacterized class of phosphatase, functions in rice innate immunity, and suggest that the conserved cysteine in the PTP-A domain of PALD is required for its immune function.


Subject(s)
Oryza/genetics , Plant Diseases/immunology , Plant Immunity/genetics , Plant Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Protein Tyrosine Phosphatases/genetics , Xanthomonas/physiology , Immunity, Innate/genetics , Oryza/immunology , Oryza/microbiology , Plant Diseases/microbiology , Plant Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Tyrosine Phosphatases/metabolism
4.
Front Plant Sci ; 11: 49, 2020.
Article in English | MEDLINE | ID: mdl-32117387

ABSTRACT

The rice XA21 and XA3 pattern receptor kinases, derived from Oryza longistaminata and an Oryza. sativa japonica cultivar Wase Aikoku 3, respectively, confer resistance to strains of the Gram-negative bacterium Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of rice bacterial blight disease. Previously, we showed that transfer of Xa21 to the model rice cultivar Kitaake enhances resistance to Xoo. In this manuscript we demonstrate that Kitaake expressing Xa3 confers resistance to Xoo strain PXO79 and that the stress-related marker genes PR10b and KO5 are upregulated in Xoo-infected Xa3 rice leaves. We also show that rice somatic embryogenesis receptor kinase 2 (OsSERK2) positively regulates XA3-mediated immunity in Kitaake. We found that overexpression of XA21 binding protein 15 (XB15) and XB24, two negative regulators of XA21-mediated immunity, do not affect XA3-mediated immunity in the Kitaake genetic background. Our results indicate that the rice immune receptors XA21 and XA3 employ both shared and distinct signaling components in their response to Xoo. The results are important to further understand pathogen-associated molecular pattern (PAMP)-triggered immunity in rice. Furthermore, the presence of Kitaake rice carrying Xa3 will facilitate genetic research to study the XA3-mediated immunity.

5.
Rice (N Y) ; 12(1): 52, 2019 Jul 18.
Article in English | MEDLINE | ID: mdl-31321562

ABSTRACT

BACKGROUND: Breeding for genes controlling key agronomic traits is an important goal of rice genetic improvement. To gain insight into genes controlling grain morphology, we screened M3 plants derived from 1,000 whole-genome sequenced (WGS) M2 Kitaake mutants to identify lines with altered grain size. RESULTS: In this study, we isolated a mutant, named fast-neutron (FN) 60-4, which exhibits a significant reduction in grain size. We crossed FN60-4 with the parental line Kitaake and analyzed the resulting backcross population. Segregation analysis of 113 lines from the BC2F2 population revealed that the mutant phenotype is controlled by a single semi-dominant locus. Mutant FN60-4 is reduced 20% in plant height and 8.8% in 1000-grain weight compared with Kitaake. FN60-4 also exhibits an 8% reduction in cell number and a 9% reduction in cell length along the vertical axis of the glume. We carried out whole-genome sequencing of DNA pools extracted from segregants with long grains or short grains, and revealed that one gene, LOC_Os09g02650, cosegregated with the grain size phenotype in the BC1F2 and BC2F2 populations. This mutant allele was named grain shape 9-1 (gs9-1). gs9-1 carries a 3-bp deletion that affects two amino acids. This locus is a new allele of the BC12/GDD1/MTD1 gene that encodes a kinesin-like protein involved in cell-cycle progression, cellulose microfibril deposition and gibberellic acid (GA) biosynthesis. The GA biosynthesis-related gene KO2 is down-regulated in gs9-1. The dwarf phenotype of gs9-1 can be rescued by adding exogenous GA3. In contrast to the phenotypes for the other alleles, the gs9-1 is less severe, consistent with the nature of the mutation, which does not disrupt the open reading frame as observed for the other alleles. CONCLUSIONS: In this study, we isolated a mutant, which exhibits altered grain shape and identified the mutated gene, gs9-1. Our study reveals that gs9-1 is a semi-dominant gene that carries a two-amino acid mutation. gs9-1 is allelic to the BC12/GDD1/MTD1 gene involved in GA biosynthesis. These results demonstrate the efficiency and convenience of cloning genes from the whole-genome sequenced Kitaake mutant population to advance investigations into genes controlling key agronomic traits in rice.

6.
BMC Biotechnol ; 18(1): 54, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30180895

ABSTRACT

BACKGROUND: Switchgrass (Panicum virgatum L.) is a promising bioenergy feedstock because it can be grown on marginal land and produces abundant biomass. Recalcitrance of the lignocellulosic components of the switchgrass cell wall to enzymatic degradation into simple sugars impedes efficient biofuel production. We previously demonstrated that overexpression of OsAT10, a BAHD acyltransferase gene, enhances saccharification efficiency in rice. RESULTS: Here we show that overexpression of the rice OsAT10 gene in switchgrass decreased the levels of cell wall-bound ferulic acid (FA) in green leaf tissues and to a lesser extent in senesced tissues, and significantly increased levels of cell wall-bound p-coumaric acid (p-CA) in green leaves but decreased its level in senesced tissues of the T0 plants under greenhouse conditions. The engineered switchgrass lines exhibit an approximate 40% increase in saccharification efficiency in green tissues and a 30% increase in senesced tissues. CONCLUSION: Our study demonstrates that overexpression of OsAT10, a rice BAHD acyltransferase gene, enhances saccharification of lignocellulosic biomass in switchgrass.


Subject(s)
Acyltransferases/genetics , Lignin/metabolism , Oryza/enzymology , Panicum/genetics , Panicum/metabolism , Plant Proteins/genetics , Plants, Genetically Modified/metabolism , Acyltransferases/metabolism , Biomass , Cell Wall/genetics , Cell Wall/metabolism , Gene Expression Regulation, Plant , Oryza/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics
7.
Plant Cell ; 29(6): 1218-1231, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28576844

ABSTRACT

The availability of a whole-genome sequenced mutant population and the cataloging of mutations of each line at a single-nucleotide resolution facilitate functional genomic analysis. To this end, we generated and sequenced a fast-neutron-induced mutant population in the model rice cultivar Kitaake (Oryza sativa ssp japonica), which completes its life cycle in 9 weeks. We sequenced 1504 mutant lines at 45-fold coverage and identified 91,513 mutations affecting 32,307 genes, i.e., 58% of all rice genes. We detected an average of 61 mutations per line. Mutation types include single-base substitutions, deletions, insertions, inversions, translocations, and tandem duplications. We observed a high proportion of loss-of-function mutations. We identified an inversion affecting a single gene as the causative mutation for the short-grain phenotype in one mutant line. This result reveals the usefulness of the resource for efficient, cost-effective identification of genes conferring specific phenotypes. To facilitate public access to this genetic resource, we established an open access database called KitBase that provides access to sequence data and seed stocks. This population complements other available mutant collections and gene-editing technologies. This work demonstrates how inexpensive next-generation sequencing can be applied to generate a high-density catalog of mutations.


Subject(s)
Genome, Plant/genetics , Genomics/methods , Oryza/genetics , DNA, Plant/genetics , Mutation/genetics , Sequence Analysis, DNA
9.
PLoS Genet ; 12(5): e1006049, 2016 05.
Article in English | MEDLINE | ID: mdl-27176732

ABSTRACT

Systemic acquired resistance, mediated by the Arabidopsis NPR1 gene and the rice NH1 gene, confers broad-spectrum immunity to diverse pathogens. NPR1 and NH1 interact with TGA transcription factors to activate downstream defense genes. Despite the importance of this defense response, the signaling components downstream of NPR1/NH1 and TGA proteins are poorly defined. Here we report the identification of a rice mutant, snim1, which suppresses NH1-mediated immunity and demonstrate that two genes encoding previously uncharacterized cysteine-rich-receptor-like kinases (CRK6 and CRK10), complement the snim1 mutant phenotype. Silencing of CRK6 and CRK10 genes individually in the parental genetic background recreates the snim1 phenotype. We identified a rice mutant in the Kitaake genetic background with a frameshift mutation in crk10; this mutant also displays a compromised immune response highlighting the important role of crk10. We also show that elevated levels of NH1 expression lead to enhanced CRK10 expression and that the rice TGA2.1 protein binds to the CRK10 promoter. These experiments demonstrate a requirement for CRKs in NH1-mediated immunity and establish a molecular link between NH1 and induction of CRK10 expression.


Subject(s)
Arabidopsis Proteins/genetics , Oryza/genetics , Plant Diseases/genetics , Plant Proteins/genetics , Arabidopsis/genetics , Cysteine/genetics , Gene Expression Regulation, Plant , Oryza/growth & development , Plants, Genetically Modified , Promoter Regions, Genetic
10.
Sci Adv ; 1(6): e1500245, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26601222

ABSTRACT

Surveillance of the extracellular environment by immune receptors is of central importance to eukaryotic survival. The rice receptor kinase XA21, which confers robust resistance to most strains of the Gram-negative bacterium Xanthomonas oryzae pv. oryzae (Xoo), is representative of a large class of cell surface immune receptors in plants and animals. We report the identification of a previously undescribed Xoo protein, called RaxX, which is required for activation of XA21-mediated immunity. Xoo strains that lack RaxX, or carry mutations in the single RaxX tyrosine residue (Y41), are able to evade XA21-mediated immunity. Y41 of RaxX is sulfated by the prokaryotic tyrosine sulfotransferase RaxST. Sulfated, but not nonsulfated, RaxX triggers hallmarks of the plant immune response in an XA21-dependent manner. A sulfated, 21-amino acid synthetic RaxX peptide (RaxX21-sY) is sufficient for this activity. Xoo field isolates that overcome XA21-mediated immunity encode an alternate raxX allele, suggesting that coevolutionary interactions between host and pathogen contribute to RaxX diversification. RaxX is highly conserved in many plant pathogenic Xanthomonas species. The new insights gained from the discovery and characterization of the sulfated protein, RaxX, can be applied to the development of resistant crop varieties and therapeutic reagents that have the potential to block microbial infection of both plants and animals.

12.
PLoS Pathog ; 11(3): e1004809, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25821973

ABSTRACT

Plant plasma membrane localized pattern recognition receptors (PRRs) detect extracellular pathogen-associated molecules. PRRs such as Arabidopsis EFR and rice XA21 are taxonomically restricted and are absent from most plant genomes. Here we show that rice plants expressing EFR or the chimeric receptor EFR::XA21, containing the EFR ectodomain and the XA21 intracellular domain, sense both Escherichia coli- and Xanthomonas oryzae pv. oryzae (Xoo)-derived elf18 peptides at sub-nanomolar concentrations. Treatment of EFR and EFR::XA21 rice leaf tissue with elf18 leads to MAP kinase activation, reactive oxygen production and defense gene expression. Although expression of EFR does not lead to robust enhanced resistance to fully virulent Xoo isolates, it does lead to quantitatively enhanced resistance to weakly virulent Xoo isolates. EFR interacts with OsSERK2 and the XA21 binding protein 24 (XB24), two key components of the rice XA21-mediated immune response. Rice-EFR plants silenced for OsSERK2, or overexpressing rice XB24 are compromised in elf18-induced reactive oxygen production and defense gene expression indicating that these proteins are also important for EFR-mediated signaling in transgenic rice. Taken together, our results demonstrate the potential feasibility of enhancing disease resistance in rice and possibly other monocotyledonous crop species by expression of dicotyledonous PRRs. Our results also suggest that Arabidopsis EFR utilizes at least a subset of the known endogenous rice XA21 signaling components.


Subject(s)
Arabidopsis Proteins/biosynthesis , Oryza/metabolism , Plant Proteins/biosynthesis , Plants, Genetically Modified/metabolism , Protein Serine-Threonine Kinases/biosynthesis , Receptors, Pattern Recognition/biosynthesis , Recombinant Fusion Proteins/biosynthesis , Signal Transduction , Arabidopsis Proteins/genetics , Oryza/genetics , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Protein Serine-Threonine Kinases/genetics , Receptors, Pattern Recognition/genetics , Recombinant Fusion Proteins/genetics
13.
J Integr Plant Biol ; 56(12): 1179-1192, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25266270

ABSTRACT

Somatic embryogenesis receptor kinase (SERK) proteins play pivotal roles in regulation of plant development and immunity. The rice genome contains two SERK genes, OsSerk1 and OsSerk2. We previously demonstrated that OsSerk2 is required for rice Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae (Xoo) and for normal development. Here we report the molecular characterization of OsSerk1. Overexpression of OsSerk1 results in a semi-dwarf phenotype whereas silencing of OsSerk1 results in a reduced angle of the lamina joint. OsSerk1 is not required for rice resistance to Xoo or Magnaporthe oryzae. Overexpression of OsSerk1 in OsSerk2-silenced lines complements phenotypes associated with brassinosteroid (BR) signaling defects, but not the disease resistance phenotype mediated by Xa21. In yeast, OsSERK1 interacts with itself forming homodimers, and also interacts with the kinase domains of OsSERK2 and BRI1, respectively. OsSERK1 is a functional protein kinase capable of auto-phosphorylation in vitro. We conclude that, whereas OsSERK2 regulates both rice development and immunity, OsSERK1 functions in rice development but not immunity to Xoo and M. oryzae.


Subject(s)
Oryza/genetics , Oryza/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Xanthomonas/physiology , Brassinosteroids/metabolism , Plant Immunity/physiology
14.
BMC Genomics ; 15: 461, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24919709

ABSTRACT

BACKGROUND: The nonexpressor of pathogenesis-related genes 1, NPR1 (also known as NIM1 and SAI1), is a key regulator of SA-mediated systemic acquired resistance (SAR) in Arabidopsis. In rice, the NPR1 homolog 1 (NH1) interacts with TGA transcriptional regulators and the Negative Regulator of Resistance (NRR) protein to modulate the SAR response. Though five NPR1 homologs (NHs) have been identified in rice, only NH1 and NH3 enhance immunity when overexpressed. To understand why NH1 and NH3, but not NH2, NH4, or NH5, contribute to the rice immune response, we screened TGA transcription factors and NRR-like proteins for interactions specific to NH1 and NH3. We also examined their co-expression patterns using publicly available microarray data. RESULTS: We tested five NHs, four NRR homologs (RHs), and 13 rice TGA proteins for pair-wise protein interactions using yeast two-hybrid (Y2H) and split YFP assays. A survey of 331 inter-family interactions revealed a broad, complex protein interaction network. To investigate preferred interaction partners when all three families of proteins were present, we performed a bridged split YFP assay employing YFPN-fused TGA, YFPC-fused RH, and NH proteins without YFP fusions. We found 64 tertiary interactions mediated by NH family members among the 120 sets we examined. In the yeast two-hybrid assay, each NH protein was capable of interacting with most TGA and RH proteins. In the split YFP assay, NH1 was the most prevalent interactor of TGA and RH proteins, NH3 ranked the second, and NH4 ranked the third. Based on their interaction with TGA proteins, NH proteins can be divided into two subfamilies: NH1, NH2, and NH3 in one family and NH4 and NH5 in the other.In addition to evidence of overlap in interaction partners, co-expression analyses of microarray data suggest a correlation between NH1 and NH3 expression patterns, supporting their common role in rice immunity. However, NH3 is very tightly co-expressed with RH1 and RH2, while NH1 is strongly, inversely co-expressed with RH proteins, representing a difference between NH1 and NH3 expression patterns. CONCLUSIONS: Our genome-wide surveys reveal that each rice NH protein can partner with many rice TGA and RH proteins and that each NH protein prefers specific interaction partners. NH1 and NH3 are capable of interacting strongly with most rice TGA and RH proteins, whereas NH2, NH4, and NH5 have weaker, limited interaction with TGA and RH proteins in rice cells. We have identified rTGA2.1, rTGA2.2, rTGA2.3, rLG2, TGAL2 and TGAL4 proteins as the preferred partners of NH1 and NH3, but not NH2, NH4, or NH5. These TGA proteins may play an important role in NH1- and NH3-mediated immune responses. In contrast, NH4 and NH5 preferentially interact with TGAL5, TGAL7, TGAL8 and TGAL9, which are predicted to be involved in plant development.


Subject(s)
Oryza/genetics , Plant Proteins/genetics , Transcription Factors/genetics , Disease Resistance/genetics , Epistasis, Genetic , Gene Expression , Oryza/metabolism , Plant Proteins/metabolism , Sequence Homology, Amino Acid , Transcription Factors/metabolism , Two-Hybrid System Techniques
15.
Mol Plant ; 7(5): 874-92, 2014 May.
Article in English | MEDLINE | ID: mdl-24482436

ABSTRACT

The rice XA21 immune receptor kinase and the structurally related XA3 receptor confer immunity to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial leaf blight. Here we report the isolation of OsSERK2 (rice somatic embryogenesis receptor kinase 2) and demonstrate that OsSERK2 positively regulates immunity mediated by XA21 and XA3 as well as the rice immune receptor FLS2 (OsFLS2). Rice plants silenced for OsSerk2 display altered morphology and reduced sensitivity to the hormone brassinolide. OsSERK2 interacts with the intracellular domains of each immune receptor in the yeast two-hybrid system in a kinase activity-dependent manner. OsSERK2 undergoes bidirectional transphosphorylation with XA21 in vitro and forms a constitutive complex with XA21 in vivo. These results demonstrate an essential role for OsSERK2 in the function of three rice immune receptors and suggest that direct interaction with the rice immune receptors is critical for their function. Taken together, our findings suggest that the mechanism of OsSERK2-meditated regulation of rice XA21, XA3, and FLS2 differs from that of AtSERK3/BAK1-mediated regulation of Arabidopsis FLS2 and EFR.


Subject(s)
Oryza/immunology , Oryza/microbiology , Plant Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Brassinosteroids/metabolism , Brassinosteroids/pharmacology , Flowers/genetics , Gene Expression Regulation, Plant/drug effects , Gene Silencing , Immunity, Innate , Mutation , Oryza/genetics , Oryza/metabolism , Phosphorylation/drug effects , Plant Leaves/genetics , Plant Proteins/chemistry , Plant Proteins/genetics , Protein Multimerization , Protein Serine-Threonine Kinases/chemistry , Protein Structure, Quaternary , Protein Structure, Tertiary , Signal Transduction/drug effects , Steroids, Heterocyclic/pharmacology , Xanthomonas/physiology
16.
Plant Biotechnol J ; 9(2): 205-15, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20561248

ABSTRACT

Non-expresser of pathogenesis-related genes 1 (NPR1) is the master regulator of salicylic acid-mediated systemic acquired resistance. Over-expression of Arabidopsis NPR1 and rice NH1 (NPR1 homolog1)/OsNPR1 in rice results in enhanced resistance. While there are four rice NPR1 paralogs in the rice genome, none have been demonstrated to function in disease resistance. To study rice NPR1 paralog 3, we introduced constructs into rice and tested for effects on resistance to infection by Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial blight. While over-expression of NH3 using the maize ubiquitin-1 promoter failed to enhance resistance, introduction of an extra copy of NH3 driven by its own promoter (nNT-NH3) resulted in clear, enhanced resistance. Progeny analysis confirms that the enhanced resistance phenotype, measured by Xoo-induced lesion length, is associated with the NH3 transgene. Bacterial growth curve analysis indicates that bacterial population levels are reduced 10-fold in nNT-NH3 lines compared to control rice lines. The transgenic plants exhibit higher sensitivity to benzothiadiazole (BTH) and 2,6-dichloroisonicotinic acid (INA) treatment as measured by increased cell death. Expression analysis of pathogenesis-related (PR) genes showed that nNT-NH3 plants display greatly enhanced induction of PR genes only after treatment with BTH. Our study demonstrates an alternative method to employ a regulatory protein to enhance plant defence. This approach avoids using undesirable constitutive, high-level expression and may prove to be more practical for engineering resistance.


Subject(s)
Oryza/genetics , Plant Diseases/genetics , Plant Proteins/genetics , Thiadiazoles/pharmacology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Immunity, Innate/genetics , Oryza/immunology , Oryza/microbiology , Phenotype , Plant Proteins/classification , Plant Proteins/metabolism , Plants, Genetically Modified/immunology , Plants, Genetically Modified/metabolism , Promoter Regions, Genetic , Ubiquitin C/genetics , Xanthomonas
17.
Proc Natl Acad Sci U S A ; 107(17): 8029-34, 2010 Apr 27.
Article in English | MEDLINE | ID: mdl-20385831

ABSTRACT

Cell-surface pattern recognition receptors (PRRs) are key components of the innate immune response in animals and plants. These receptors typically carry or associate with non-RD kinases to control early events of innate immunity signaling. Despite their importance, the mode of regulation of PRRs is largely unknown. Here we show that the rice PRR, XA21, interacts with XA21 binding protein 24 (XB24), a previously undescribed ATPase. XB24 promotes autophosphorylation of XA21 through its ATPase activity. Rice lines silenced for Xb24 display enhanced XA21-mediated immunity, whereas rice lines overexpressing XB24 are compromised for immunity. XB24 ATPase enzyme activity is required for XB24 function. XA21 is degraded in the presence of the pathogen-associated molecular pattern Ax21 when XB24 is overexpressed. These results demonstrate a function for this large class of broadly conserved ATPases in PRR-mediated immunity.


Subject(s)
Adenosine Triphosphatases/metabolism , Immunity, Innate/genetics , Oryza/immunology , Phylogeny , Plant Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Receptors, Cell Surface/metabolism , Recombinant Fusion Proteins/metabolism , Adenosine Triphosphatases/genetics , Amino Acid Sequence , DNA Primers/genetics , Evolution, Molecular , Immunoprecipitation , Molecular Sequence Data , Oryza/genetics , Oryza/metabolism , Phosphorylation , Plant Proteins/genetics , Protein Serine-Threonine Kinases/genetics , RNA Interference , Receptors, Cell Surface/genetics , Reverse Transcriptase Polymerase Chain Reaction , Two-Hybrid System Techniques
18.
J Biol Chem ; 285(14): 10454-63, 2010 Apr 02.
Article in English | MEDLINE | ID: mdl-20118235

ABSTRACT

Despite the key role that pattern recognition receptors (PRRs) play in regulating immunity in plants and animals, the mechanism of activation of the associated non-arginine-aspartate (non-RD) kinases is unknown. The rice PRR XA21 recognizes the pathogen-associated molecular pattern, Ax21 (activator of XA21-mediated immunity). Here we show that the XA21 juxtamembrane (JM) domain is required for kinase autophosphorylation. Threonine 705 in the XA21 JM domain is essential for XA21 autophosphorylation in vitro and XA21-mediated innate immunity in vivo. The replacement of Thr(705) by an alanine or glutamic acid abolishes XA21 autophosphorylation and eliminates interactions between XA21 and four XA21-binding proteins in yeast and rice. Although threonine residues analogous to Thr(705) of XA21 are present in the JM domains of most RD and non-RD plant receptor-like kinases, this residue is not required for autophosphorylation of the Arabidopsis RD RLK BRI1 (brassinosteroid insensitive 1). The threonine 705 of XA21 is conserved only in the JM domains of plant RLKs but not in those of fly, human, or mouse suggesting distinct regulatory mechanisms. These results contribute to growing knowledge regarding the mechanism by which non-RD RLKs function in plant.


Subject(s)
Immunity, Innate , Oryza/genetics , Oryza/metabolism , Plant Diseases/immunology , Plant Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Threonine/chemistry , Amino Acid Sequence , Arabidopsis Proteins , Blotting, Western , Cell Membrane/metabolism , Gene Expression Regulation, Plant , Green Fluorescent Proteins , Humans , Immunoprecipitation , Molecular Sequence Data , Mutagenesis, Site-Directed , Oryza/growth & development , Phosphorylation , Plant Diseases/microbiology , Plant Proteins/metabolism , Plants, Genetically Modified , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid , Threonine/genetics , Threonine/metabolism , Two-Hybrid System Techniques
19.
PLoS Biol ; 6(9): e231, 2008 Sep 23.
Article in English | MEDLINE | ID: mdl-18817453

ABSTRACT

Perception of extracellular signals by cell surface receptors is of central importance to eukaryotic development and immunity. Kinases that are associated with the receptors or are part of the receptors themselves modulate signaling through phosphorylation events. The rice (Oryza sativa L.) XA21 receptor kinase is a key recognition and signaling determinant in the innate immune response. A yeast two-hybrid screen using the intracellular portion of XA21, including the juxtamembrane (JM) and kinase domain as bait, identified a protein phosphatase 2C (PP2C), called XA21 binding protein 15 (XB15). The interaction of XA21 and XB15 was confirmed in vitro and in vivo by glutathione-S-transferase (GST) pull-down and co-immunoprecipitation assays, respectively. XB15 fusion proteins purified from Escherichia coli and from transgenic rice carry PP2C activity. Autophosphorylated XA21 can be dephosphorylated by XB15 in a temporal- and dosage-dependent manner. A serine residue in the XA21 JM domain is required for XB15 binding. Xb15 mutants display a severe cell death phenotype, induction of pathogenesis-related genes, and enhanced XA21-mediated resistance. Overexpression of Xb15 in an XA21 rice line compromises resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae. These results demonstrate that Xb15 encodes a PP2C that negatively regulates the XA21-mediated innate immune response.


Subject(s)
Cell Death/physiology , Oryza/enzymology , Phosphoprotein Phosphatases/metabolism , Plant Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Amino Acid Sequence , Animals , Base Sequence , Cell Membrane/metabolism , Gene Expression Regulation, Plant , Humans , Immunity, Innate , Molecular Sequence Data , Oryza/genetics , Phosphoprotein Phosphatases/classification , Phosphoprotein Phosphatases/genetics , Phosphorylation , Phylogeny , Plant Proteins/classification , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Protein Phosphatase 2C , Protein Serine-Threonine Kinases/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Retroelements/genetics , Sequence Alignment , Two-Hybrid System Techniques , Xanthomonas/immunology , Xanthomonas/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...