Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4303, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773073

ABSTRACT

Uncontrollable zinc (Zn) plating and hydrogen evolution greatly undermine Zn anode reversibility. Previous electrolyte designs focus on suppressing H2O reactivity, however, the accumulation of alkaline byproducts during battery calendar aging and cycling still deteriorates the battery performance. Here, we present a direct strategy to tackle such problems using a strong Brønsted acid, bis(trifluoromethanesulfonyl)imide (HTFSI), as the electrolyte additive. This approach reformulates battery interfacial chemistry on both electrodes, suppresses continuous corrosion reactions and promotes uniform Zn deposition. The enrichment of hydrophobic TFSI- anions at the Zn|electrolyte interface creates an H2O-deficient micro-environment, thus inhibiting Zn corrosion reactions and inducing a ZnS-rich interphase. This highly acidic electrolyte demonstrates high Zn plating/stripping Coulombic efficiency up to 99.7% at 1 mA cm-2 ( > 99.8% under higher current density and areal capacity). Additionally, Zn | |ZnV6O9 full cells exhibit a high capacity retention of 76.8% after 2000 cycles.

2.
Nat Commun ; 15(1): 2033, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448427

ABSTRACT

Constraining the electrochemical reactivity of free solvent molecules is pivotal for developing high-voltage lithium metal batteries, especially for ether solvents with high Li metal compatibility but low oxidation stability ( <4.0 V vs Li+/Li). The typical high concentration electrolyte approach relies on nearly saturated Li+ coordination to ether molecules, which is confronted with severe side reactions under high voltages ( >4.4 V) and extensive exothermic reactions between Li metal and reactive anions. Herein, we propose a molecular anchoring approach to restrict the interfacial reactivity of free ether solvents in diluted electrolytes. The hydrogen-bonding interactions from the anchoring solvent effectively suppress excessive ether side reactions and enhances the stability of nickel rich cathodes at 4.7 V, despite the extremely low Li+/ether molar ratio (1:9) and the absence of typical anion-derived interphase. Furthermore, the exothermic processes under thermal abuse conditions are mitigated due to the reduced reactivity of anions, which effectively postpones the battery thermal runaway.

3.
Chem Sci ; 15(12): 4238-4274, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38516064

ABSTRACT

In response to societal developments and the growing demand for high-energy-density battery systems, alkali metal batteries (AMBs) have emerged as promising candidates for next-generation energy storage. Despite their high theoretical specific capacity and output voltage, AMBs face critical challenges related to high reactivity with electrolytes and unstable interphases. This review, from the perspective of electrolytes, analyzes AMB failure mechanisms, including interfacial side reactions, active materials loss, and metal dendrite growth. It then reviews recent advances in innovative electrolyte molecular designs, such as ether, ester, sulfone, sulfonamide, phosphate, and salt, aimed at overcoming the above-mentioned challenges. Finally, we propose the current molecular design principles and future promising directions that can help future precise electrolyte molecular design.

4.
JACS Au ; 3(3): 953-963, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37006759

ABSTRACT

Electrolytes are critical for the reversibility of various electrochemical energy storage systems. The recent development of electrolytes for high-voltage Li-metal batteries has been counting on the salt anion chemistry for building stable interphases. Herein, we investigate the effect of the solvent structure on the interfacial reactivity and discover profound solvent chemistry of designed monofluoro-ether in anion-enriched solvation structures, which enables enhanced stabilization of both high-voltage cathodes and Li-metal anodes. Systematic comparison of different molecular derivatives provides an atomic-scale understanding of the unique solvent structure-dependent reactivity. The interaction between Li+ and the monofluoro (-CH2F) group significantly influences the electrolyte solvation structure and promotes the monofluoro-ether-based interfacial reactions over the anion chemistry. With in-depth analyses of the compositions, charge transfer, and ion transport at interfaces, we demonstrated the essential role of the monofluoro-ether solvent chemistry in tailoring highly protective and conductive interphases (with enriched LiF at full depths) on both electrodes, as opposed to the anion-derived ones in typical concentrated electrolytes. As a result, the solvent-dominant electrolyte chemistry enables a high Li Coulombic efficiency (∼99.4%) and stable Li anode cycling at a high rate (10 mA cm-2), together with greatly improved cycling stability of 4.7 V-class nickel-rich cathodes. This work illustrates the underlying mechanism of the competitive solvent and anion interfacial reaction schemes in Li-metal batteries and offers fundamental insights into the rational design of electrolytes for future high-energy batteries.

5.
Angew Chem Int Ed Engl ; 62(23): e202219310, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37016460

ABSTRACT

Albeit ethers are favorable electrolyte solvents for lithium (Li) metal anode, their inferior oxidation stability (<4.0 V vs. Li/Li+ ) is problematic for high-voltage cathodes. Studies of ether electrolytes have been focusing on the archetype glyme structure with ethylene oxide moieties. Herein, we unveil the crucial effect of ion coordination configuration on oxidation stability by varying the ether backbone structure. The designed 1,3-dimethoxypropane (DMP, C3) forms a unique six-membered chelating complex with Li+ , whose stronger solvating ability suppresses oxidation side reactions. In addition, the favored hydrogen transfer reaction between C3 and anion induces a dramatic enrichment of LiF (a total atomic ratio of 76.7 %) on the cathode surface. As a result, the C3-based electrolyte enables greatly improved cycling of nickel-rich cathodes under 4.7 V. This study offers fundamental insights into rational electrolyte design for developing high-energy-density batteries.

6.
ACS Appl Mater Interfaces ; 15(10): 13155-13164, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36857304

ABSTRACT

Ethers are promising electrolytes for lithium (Li) metal batteries (LMBs) because of their unique stability with Li metal. Although intensive research on designing anion-enriched electrolyte solvation structures has greatly improved their electrochemical stabilities, ether electrolytes are approaching an anodic bottleneck. Herein, we reveal the strong correlation between electrolyte solvation structure and oxidation stability. In contrast to previous designs of weakly solvating solvents for enhanced anion reactivities, the triglyme (G3)-based electrolyte with the largest Li+ solvation energy among different linear ethers demonstrates greatly improved stability on Ni-rich cathodes under an ultrahigh voltage of 4.7 V (93% capacity retention after 100 cycles). Ether electrolytes with a stronger Li+ solvating ability could greatly suppress deleterious oxidation side reactions by decreasing the lifetime of free labile ether molecules. This study provides critical insights into the dynamics of the solvation structure and its significant influence on the interfacial stability for future development of high-efficiency electrolytes for high-energy-density LMBs.

7.
J Am Chem Soc ; 145(11): 6339-6348, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36892881

ABSTRACT

Electrocatalytic CO2 reduction reaction (CO2RR) is one of the most promising routes to facilitate carbon neutrality. An alkaline electrolyte is typically needed to promote the production of valuable multi-carbon molecules (such as ethylene). However, the reaction between CO2 and OH- consumes a significant quantity of CO2/alkali and causes the rapid decay of CO2RR selectivity and stability. Here, we design a catalyst-electrolyte interface with an effective electrostatic confinement of in situ generated OH- to improve ethylene electrosynthesis from CO2 in neutral medium. In situ Raman measurements indicate the direct correlation between ethylene selectivity and the intensities of surface Cu-CO and Cu-OH species, suggesting the promoted C-C coupling with the surface enrichment of OH-. Thus, we report a CO2-to-ethylene Faradaic efficiency (FE) of 70% and a partial current density of 350 mA cm-2 at -0.89 V vs the reversible hydrogen electrode. Furthermore, the system demonstrated a 50 h stable operation at 300 mA cm-2 with an average ethylene FE of ∼68%. This study offers a universal strategy to tune the reaction micro-environment, and a significantly improved ethylene FE of 64.5% was obtained even in acidic electrolytes (pH = 2).

8.
Chem Sci ; 14(5): 1184-1193, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36756331

ABSTRACT

Nonflammable electrolytes are critical for the safe operation of high-voltage lithium-ion batteries (LIBs). Although organic phosphates are effective flame retardants, their poor electrochemical stability with a graphite (Gr) anode and Ni-rich cathodes would lead to the deterioration of electrode materials and fast capacity decay. Herein, we develop a safe and high-performance electrolyte formulation for high-voltage (4.6 V-class) LIBs using flame-retarding ethoxy(pentafluoro) cyclotriphosphazene (PFPN) as a non-solvating diluent for the high-concentration carbonate-ether hybrid electrolyte. In contrast to conventional nonflammable additives with restricted dosage, the high level of PFPN (69% mass ratio in our electrolyte design) could significantly increase the electrolyte flash point and protect the favored anion-rich inner solvation sheath because of its non-solvating feature, thus preventing solvent co-intercalation and structural damage to the Gr anode. The nonflammable electrolyte could also form a stable LiF-rich cathode electrolyte interphase (CEI), which enables superior electrochemical performances of Gr‖LiNi0.8Mn0.1Co0.1O2 (NMC811) full cells at high voltages (∼82.0% capacity retention after 1000 cycles at 4.5 V; 89.8% after 300 cycles at 4.6 V) and high temperatures (50 °C). This work sheds light on the electrolyte design and interphase engineering for developing practical safe high-energy-density LIBs.

9.
Angew Chem Int Ed Engl ; 62(9): e202217671, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36592001

ABSTRACT

Electrolyte freezing under low temperatures is a critical challenge for the development of aqueous batteries (ABs). While lowering the freezing point of the electrolyte has caught major research efforts, limited attention has been paid to the structural evolution during the electrolyte freezing process and regulating the frozen electrolyte structure for low temperature ABs. Here, we reveal the formation process of interconnected liquid regions for ion transport in frozen electrolytes with various in situ variable-temperature technologies. More importantly, the low-temperature performance of ABs was significantly improved with the colloidal electrolyte design using graphene oxide quantum dots (GOQDs), which effectively inhibits the growth of ice crystals and expands the interconnected liquid regions for facial ion transport. This work provides new insights and a promising strategy for the electrolyte design of low-temperature ABs.

10.
Angew Chem Int Ed Engl ; 61(32): e202203693, 2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35388586

ABSTRACT

The issues of inherent low anodic stability and high flammability hinder the deployment of the ether-based electrolytes in practical high-voltage lithium metal batteries. Here, we report a rationally designed ether-based electrolyte with chlorine functionality on ether molecular structure to address these critical challenges. The chloroether-based electrolyte demonstrates a high Li Coulombic efficiency of 99.2 % and a high capacity retention >88 % over 200 cycles for Ni-rich cathodes at an ultrahigh cut-off voltage of 4.6 V (stable even up to 4.7 V). The chloroether-based electrolyte not only greatly improves electrochemical stabilities of Ni-rich cathodes under ultrahigh voltages with interphases riched in LiF and LiCl, but possesses the intrinsic nonflammable safety feature owing to the flame-retarding ability of chlorine functional groups. This study offers a new approach to enable ether-based electrolytes for high energy density, long-life and safe Li metal batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...