Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(18)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37765925

ABSTRACT

The interactions between power quality in the AC-DC distribution network segments contribute to the distributed propagation of power quality anomalies throughout the entire network. Focusing on the photovoltaic multifunctional grid-connected inverter (PVMFGCI), this study deeply explores a collaborative governance strategy for optimizing regional power quality. Initially, the analysis dissects the DC ripple generation mechanism corresponding to harmonics and asymmetry in AC subnetwork voltages. Subsequently, a strategy is proposed for partitioning comprehensive control regions for AC-side power quality, taking into account photovoltaic governance resources based on insights from photovoltaic control realms and power quality classifications. Further, a collaborative allocation model for governance resources incorporating active optimization potentials of grid-connected converters is established based on the governance capabilities and residual capacities of PVMFGCI. Finally, the effectiveness of the proposed approach is validated through a MATLAB-based example analysis.

2.
Sensors (Basel) ; 23(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37299809

ABSTRACT

The intelligent fault diagnosis of main circulation pumps is crucial for ensuring their safe and stable operation. However, limited research has been conducted on this topic, and applying existing fault diagnosis methods designed for other equipment may not yield optimal results when directly used for main circulation pump fault diagnosis. To address this issue, we propose a novel ensemble fault diagnosis model for the main circulation pumps of converter valves in voltage source converter-based high voltage direct current transmission (VSG-HVDC) systems. The proposed model employs a set of base learners already able to achieve satisfying fault diagnosis performance and a weighting model based on deep reinforcement learning that synthesizes the outputs of these base learners and assigns different weights to obtain the final fault diagnosis results. The experimental results demonstrate that the proposed model outperforms alternative approaches, achieving an accuracy of 95.00% and an F1 score of 90.48%. Compared to the widely used long and short-term memory artificial neural network (LSTM), the proposed model exhibits improvements of 4.06% in accuracy and 7.85% in F1 score. Furthermore, it surpasses the latest existing ensemble model based on the improved sparrow algorithm, with enhancements of 1.56% in accuracy and 2.91% in F1 score. This work presents a data-driven tool with high accuracy for the fault diagnosis of main circulation pumps, which plays a critical role in maintaining the operational stability of VSG-HVDC systems and satisfying the unmanned requirements of offshore flexible platform cooling systems.


Subject(s)
Algorithms , Electricity , Intelligence , Memory, Short-Term , Neural Networks, Computer
3.
Sensors (Basel) ; 23(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37112451

ABSTRACT

Appropriate cooling of the converter valve in a high-voltage direct current (HVDC) transmission system is highly significant for the safety, stability, and economical operation of a power grid. The proper adjustment of cooling measures is based on the accurate perception of the valve's future overtemperature state, which is characterized by the valve's cooling water temperature. However, very few previous studies have focused on this need, and the existing Transformer model, which excels in time-series predictions, cannot be directly applied to forecast the valve overtemperature state. In this study, we modified the Transformer and present a hybrid Transformer-FCM-NN (TransFNN) model to predict the future overtemperature state of the converter valve. The TransFNN model decouples the forecast process into two stages: (i) The modified Transformer is used to obtain the future values of the independent parameters; (ii) the relation between the valve cooling water temperature and the six independent operating parameters is fit, and the output of the Transformer is used to calculate the future values of the cooling water temperature. The results of the quantitative experiments showed that the proposed TransFNN model outperformed other models with which it was compared; with TransFNN being applied to predict the overtemperature state of the converter valves, the forecast accuracy was 91.81%, which was improved by 6.85% compared with that of the original Transformer model. Our work provides a novel approach to predicting the valve overtemperature state and acts as a data-driven tool for operation and maintenance personnel to use to adjust valve cooling measures punctually, effectively, and economically.

SELECTION OF CITATIONS
SEARCH DETAIL
...