Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 850: 158092, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35985576

ABSTRACT

Plant trait network analysis can calculate the topology of trait correlations and clarify the complex relationships among traits, providing new insights into ecological topics, including trait dimensions and phenotypic integration. However, few studies have focused on the relationships between network topology and community structure, functioning, and adaptive strategies, especially in natural submerged macrophyte communities. In this study, we collected 15 macrophyte community-level traits from 12 shallow lakes in the Yangtze River Basin in the process of eutrophication and analyzed the changes in trait network structure (i.e., total phosphorus, TP) by using a moving window method. Our results showed that water TP significantly changed the topology of trait networks. Specifically, under low or high nutrient levels, the network structure was more dispersed, with lower connectance and higher modularity than that found at moderate nutrient levels. We also found that network connectance was positively correlated with community biomass and homeostasis, while network modularity was negatively correlated with community biomass and homeostasis. In addition, modules and hub traits also changed with the intensity of eutrophication, which can reflect the trait integration and adaptation strategies of plants in a stressful environment. At low or high nutrient levels, more modules were differentiated, and those modules with higher strength were related to community nutrition. Our results clarified the dynamics of community structure and functioning from a new perspective of plant trait networks, which is key to predicting the response of ecosystems to environmental changes.


Subject(s)
Ecosystem , Eutrophication , Lakes/chemistry , Phosphorus/analysis , Plants , Water/analysis
2.
Sci Total Environ ; 845: 157280, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35835193

ABSTRACT

Volatile organic sulfur compounds (VSCs) released by algae are of great significance in sulfur cycle, climate regulation and biological information transmission, and they also caused taste and odor in freshwaters. However, the categories, sources, and environmental regulatory factors of VSCs in freshwaters were less known. Here, we show that eight common freshwater cyanobacterium Microcystis, which bloom in freshwaters over the world, are found to be important producers of VSCs. Dimethyl sulfide (DMS), dimethyl disulfide (DMDS) and isopropyl methyl sulfide (IPMS) are the main VSCs with the highest concentrations 184.81 nmol/L, 162.01 nmol/L and 101.55 nmol/L, respectively. The amount of VSCs released from those Microcystis varied greatly, M. elabens, M. panniformis and M. flos-aquae released the largest amount of VSCs (1260.52 nmol S/L, 1154.75 nmol S/L and 670.58 nmol S/L), and M. wesenbergii had the smallest release amount. We also found for the first time that phosphorus (P) was one of the important factors for the regulation VSCs from most Microcystis. P can elevate the release of DMS by promoting the biomass and DMS yields of most Microcystis in the range 0.05 mg/L to 0.5 mg/L. Similar results were also found in 16 lakes at three different spatiotemporal scales. Overall, we revealed that the common freshwater Microcystis were able to release diverse thioethers, and the major VSCs were significantly influenced by water P concentrations. In the context of global freshwater eutrophication and Microcystis bloom, freshwater cyanobacteria driven sulfur cycle and water odor will probably be further strengthened.


Subject(s)
Cyanobacteria , Microcystis , Volatile Organic Compounds , Eutrophication , Lakes , Phosphorus , Sulfur , Sulfur Compounds , Water
3.
Environ Pollut ; 292(Pt A): 118331, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34637833

ABSTRACT

Significant differences in the morphological and physiological characteristics of submerged macrophytes have been studied following nutrient addition, but little research has investigated the changes in plant trait network topology structures and trait interactions at the whole-plant perspective along nutrient gradients. Plant trait interactions and coordination strongly determine ecosystem structure and functioning. Thirty plant traits were collected from a three-month experiment to construct plant trait networks to clarify the variations in trait connections and network organization arising from five total phosphorus (TP) addition concentrations in water, including a control (CK), 0.1 (TP1), 0.2 (TP2), 0.4 (TP3), and 0.8 (TP4) mg L-1. Nonmetric multidimensional scaling analysis showed a clear difference in the distribution of plant trait space among the different TP treatments. Distinct network structures showed that water TP-deficiency and TP-repletion changed the plant trait network into loose assemblages of more modules, which was related to low plant carbohydrate levels. Most plant functions involving biomass accumulation and carbohydrate synthesis were reduced under high TP conditions compared to moderate TP enrichment. Moreover, the percentage of significant relationships between plant functions and corresponding network modules was lower in the CK and TP4 treatments. These results suggested that low plant carbohydrates in high TP environments induced by high water chlorophyll a and tissue phosphorus could not support rapid resource transport among organs and thus inefficiently performed plant functions. Plant carbohydrates were a vital variable that impacted the network edge density, trait interactions, and plant growth. In summary, we demonstrated that high water TP enrichment reduces plant trait network connectedness and plant functional potentials, which may be correlated with reducing tissue carbohydrates. This study explores the correlations between plant trait network topology and functions to improve our understanding of physiological and ecological rules regulating trait interactions among organs and plant growth under eutrophic conditions.


Subject(s)
Ecosystem , Phosphorus , Biomass , Chlorophyll A , Water
4.
Water Res ; 202: 117392, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34243052

ABSTRACT

Eutrophication strongly influences plant stoichiometric characteristics and physiological status by altering nutrient and light availability in the water column. However, the mechanisms linking plant functional traits with ecosystem structure and functioning to clarify the decline of submerged macrophytes have not been fully elucidated to date. Therefore, based on a field investigation of 26 macrophytic shallow lakes on the Yangtze Plain, we first constructed a plant trait network at the whole-plant level to determine the hub traits of submerged macrophytes that play central regulatory roles in plant phenotype. Our results suggested that organ (leaf, stem, and root) phosphorus (P), starch, and total nonstructural carbohydrate (TNC) contents were hub traits. Organ starch and TNC were consistent with those in the experiment-based network obtained from a three-month manipulation experiment. Next, the mechanisms underlying the relationships between the hub traits and vital aspects of ecological performance were carefully investigated using field investigation data. Specifically, stoichiometric homeostasis of P (HP), starch, and TNC were positively associated with dominance and biomass at the species level, and community biomass at the community level. Additionally, structural equation modeling clarified not only a hypothesized pathway from eutrophication to water clarity and community TNC, but also combined effects of community TNC and HP on community biomass. That is, ecosystems dominated by more homeostatic communities tended to have more carbon (C)-rich compounds in relatively oligotrophic conditions, which promoted the primary production of macrophytes. Eutrophication was determined to affect community structure by inhibiting the predominance of more homeostatic species and the production of carbohydrates. Finally, reduced community biomass and increased nutrient contents and nutrient:C ratios in plants induced by eutrophication implied a decrease in the C sink in biomass and may potentially lead to an enhancement of litter decomposition rates and nutrient cycling rates. By adjusting plant responses to eutrophication, stoichiometric and physiological mechanisms linking plant traits with ecosystem structure have important implications for understanding ecosystem processes, and these results may contribute to practical management to achieve the restoration of submerged macrophytes and ecosystem services.


Subject(s)
Ecosystem , Lakes , Eutrophication , Phenotype , Phosphorus
5.
Front Plant Sci ; 11: 524450, 2020.
Article in English | MEDLINE | ID: mdl-33193470

ABSTRACT

The allocation of limiting elements among plant organs is an important aspect of the adaptation of plants to their ambient environment. Although eutrophication can extremely alter light and nutrient availability, little is known about nutrient partitioning among organs of submerged macrophytes in response to eutrophication. Here, we analyzed the stoichiometric scaling of carbon (C), nitrogen (N), and phosphorus (P) concentrations among organs (leaf, stem, and root) of 327 individuals of seven common submerged macrophytes (three growth forms), sampled from 26 Yangtze plain lakes whose nutrient levels differed. Scaling exponents of stem nutrients to leaf (or root) nutrients varied among the growth forms. With increasing water total N (WTN) concentration, the scaling exponents of stem C to leaf (or root) C increased from <1 to >1, however, those of stem P to root P showed the opposite trend. These results indicated that, as plant nutrient content increased, plants growing in low WTN concentration accumulated leaf C (or stem P) at a faster rate, whereas those in high WTN concentration showed a faster increase in their stem C (or root P). Additionally, the scaling exponents of stem N to leaf (or root) N and stem P to leaf P were consistently large than 1, but decreased with a greater WTN concentration. This suggested that plants invested more N and P into stem than leaf tissues, with a higher investment of N in stem than root tissues, but eutrophication would decrease the allocation of N and P to stem. Such shifts in plant nutrient allocation strategies from low to high WTN concentration may be attributed to changed light and nutrient availability. In summary, eutrophication would alter nutrient allocation strategies of submerged macrophytes, which may influence their community structures by enhancing the competitive ability of some species in the process of eutrophication.

6.
Analyst ; 140(2): 637-43, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25429372

ABSTRACT

Highly fluorescent g-C3N4 nanosheets were facilely fabricated by exfoliating bulk g-C3N4 under ultrasonic irradiation for 1 h. The atomic force microscopy (AFM) image shows that the resultant g-C3N4 nanosheets are ∼6-14 nm thick, and the suspension is stable in air for several weeks. Remarkably, the obtained nanosheets exhibited strong fluorescence with an extremely high quantum yield (QY) up to 32%, and high sensitivity, selectivity, as well as a fast response to nitro aromatic explosives were observed. Typically, the quenching efficiency coefficient Ksv for PNP was 30,460 M(-1), which proved that the resultant nanosheets possessed an extremely high sensitivity for nitro-phenol PNP detection.

SELECTION OF CITATIONS
SEARCH DETAIL
...