Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 34(30): e2202072, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35580350

ABSTRACT

Surface oxygen vacancies have been widely discussed to be crucial for tailoring the activity of various chemical reactions from CO, NO, to water oxidation by using oxide-supported catalysts. However, the real role and potential function of surface oxygen vacancies in the reaction remains unclear because of their very short lifetime. Here, it is reported that surface oxygen vacancies can be well confined electrostatically for a polarization screening near the perimeter interface between Pt {111} nanocrystals and the negative polar surface (001) of ferroelectric PbTiO3. Strikingly, such a catalyst demonstrates a tunable catalytic CO oxidation kinetics from 200 °C to near room temperature by increasing the O2 gas pressure, accompanied by the conversion curve from a hysteresis-free loop to one with hysteresis. The combination of reaction kinetics, electronic energy loss spectroscopy (EELS) analysis, and density functional theory (DFT) calculations, indicates that the oxygen vacancies stabilized by the negative polar surface are the active sites for O2 adsorption as a rate-determining step, and then dissociated O moves to the surface of the Pt nanocrystals for oxidizing adsorbed CO. The results open a new pathway for tunable catalytic activity of CO oxidation.

2.
Adv Mater ; 33(29): e2006836, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34096113

ABSTRACT

Macromolecular films are crucial functional materials widely used in the fields of mechanics, electronics, optoelectronics, and biology, due to their superior properties of chemical stability, small density, high flexibility, and solution-processing ability. Their electronic and mechanical properties, however, are typically much lower than those of crystalline materials, as the macromolecular films have no long-range structural ordering. The state-of-the-art for producing highly ordered macromolecular films is still facing a great challenge due to the complex interactions between adjacent macromolecules. Here, the growth of textured macromolecular films on a designed graphene/high-index copper (Cu) surface is demonstrated. This successful growth is driven by a patterned potential that originates from the different amounts of charge transfer between the graphene and Cu surfaces with, alternately, terraces and step edges. The textured films exhibit a remarkable improvement in remnant ferroelectric polarization and fracture strength. It is also demonstrated that this growth mechanism is universal for different macromolecules. As meter-scale graphene/high-index Cu substrates have recently become available, the results open a new regime for the production and applications of highly ordered macromolecular films with obvious merits of high production and low cost.

3.
ACS Appl Mater Interfaces ; 11(40): 37256-37262, 2019 Oct 09.
Article in English | MEDLINE | ID: mdl-31496216

ABSTRACT

Facet engineering of anatase TiO2 by controlling the {001} exposure ratio has been the focus of numerous investigations to optimize photocatalytic activity. In particular, an introduction of fluoride ions during the crystal growth has been demonstrated to be very effective and decisive in realizing the facet exposure of the crystals. However, a key role of fluoride ions in stabilizing {001} exposure and improving subsequent photocatalytic activity of anatase TiO2 remains unclear up to date. Herein, a controlled thickness of anatase TiO2 nanosheets has been realized by introducing different amounts of ethanol into a HF acid-assisted hydrothermal reaction. The thinnest nanosheets with a thickness of ∼2.9 nm were evaluated to have the highest H2 production rate of 41.04 mmol·h-1·g-1 under ultraviolet light irradiation, and the corresponding quantum efficiency was determined to be 41.6% (λ = 365 nm). Moreover, it is proved for the first time that fluoride ions are bonded with Ti vacancies on {001} facets, and such defects are crucial for stabilizing the ultrathin nanosheets and improving their electron-hole separation, therefore leading to a highly efficient photocatalytic activity. The findings offer an opportunity to engineer facets and functionality of anatase TiO2 by controlling surface defects.

SELECTION OF CITATIONS
SEARCH DETAIL
...