Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(11): e0293823, 2023.
Article in English | MEDLINE | ID: mdl-38019774

ABSTRACT

As is well known, the metal annealing process has the characteristics of heat concentration and rapid heating. Traditional vacuum annealing furnaces use PID control method, which has problems such as high temperature fluctuation, large overshoot, and long response time during the heating and heating process. Based on this situation, some domestic scholars have adopted fuzzy PID control algorithm in the temperature control of vacuum annealing furnaces. Due to the fact that fuzzy rules are formulated through a large amount of on-site temperature data and experience summary, there is a certain degree of subjectivity, which cannot ensure that each rule is optimal. In response to this drawback, the author combined the technical parameters of vacuum annealing furnace equipment, The fuzzy PID temperature control of the vacuum annealing furnace is optimized using genetic algorithm. Through simulation and comparative analysis, it is concluded that the design of the fuzzy PID vacuum annealing furnace temperature control system based on GA optimization is superior to fuzzy PID and traditional PID control in terms of temperature accuracy, rise time, and overshoot control. Finally, it was verified through offline experiments that the fuzzy PID temperature control system based on GA optimization meets the annealing temperature requirements of metal workpieces and can be applied to the temperature control system of vacuum annealing furnaces.


Subject(s)
Algorithms , Fuzzy Logic , Temperature , Vacuum , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...